back_img
好工具 >范文 >实用文

合并同类项设计教案

2024-07-12 15:55:39 合并同类项设计教案

【#实用文# #合并同类项设计教案#】作为一名老师,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?下面是小编整理的《合并同类项》教案,仅供参考,希望能够帮助到大家。

合并同类项设计教案 篇1

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个二次根式的'例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

合并同类项设计教案 篇2

[教学目标]知识目标:使学生了解同类项的概念,能识别同类项,学会合并同类项并知道合并同类项所依据的运算律.

能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想.情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动.培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神.

[教学重点]同类项的概念和合并同类项的法则及求代数式的值。[教学难点]学会合并同类项.

[教学方法]引导、启发、探求.[教学过程]

一、复习回顾

1.同类项:所含字母相同,并且相同字母的指数也相同的项。几个常数也是同类项。

2.同类项有两个特征(1)所含字母相同;(2)相同字母的指数分别相同;(两者缺一不可)3.同类项与他们的系数大小无关;4.同类项与它们所含相同字母的顺序无关;

5、判断下列说法是否正确。(1)、3x与3mx是同类项。(2)、2ab与-5ab是同类项。(3)、3x2与1?3yx2是同类项。(4)、5ab2与2ab2c是同类项。(5)、23与32是同类项。

二、创设情境,引入课题

问题:为了搞好班会活动,班长和生活委员去购买一些水笔和软抄本作为奖品,他们首先购买了15本软抄本和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软抄本和5支水笔。问:

1、他们两次共买了多少本软抄本和多少支水笔?

答案:21本软抄本,25支水笔2、如果软抄本的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?答案:15x+20y+6x+5y=21x+5y提问合并同类项概念:把多项式中的同类项合并成一项。

设计意图:用此方式,充分调动了学生积极参与,激发了学生求知欲望创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题.

二、实践思考探索交流

1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项。

问题1:同类项有哪些?同类项怎么合并?

①-3+5=________;② 3x2y+5x2y=__________=______

其理由是____________;③-4xy2 +2xy2=____________=_______

其理由是____________.问题2:在一个多项式中,不在一起的同类项能否将同类项结合在一起?为什么?

答:可以,理由是运用加法交换律与结合律将同类项结合在一起,原多项式不变。

解:3x2y-4xy2-3+5x2y+2xy2+5

=3x2y+5x2y-4xy2+2xy2+5-3

加法交换律

=(3x2y+5x2y)+(-4xy2+2xy2)+(5-3)

统一加法的形式

=(3+5)x2y+(-4+2)xy2

+(5-3)

乘法分配律的逆运算

=8x2y-2xy2+2

合并问题4:根据上面合并同类项的例子,你能归纳合并同类项的法则吗?

合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意:(1)、合并的前提是有同类项.(2)、合并指的是系数相加,”相加”指的是代数和.(3)、合并同类项的根据是加法交换律、结合律以及乘法分配律。

设计意图:利用问题形式提示学生上面是利用了乘法的分配律逆运算(学生分组讨论.)例

2、合并下列多项式中的同类项。(1)a3-a2b+ab2+a2b-ab2+b3(2)6a2-5b2+2ab+5b2-6a2学生思考:合并同类项的步骤是怎样?

1、准确地找出同类项。

2、利用合并同类项的法则合并同类项。3写出合并后的结果。

解:

(1)、a3-a2b+ab2+a2b-ab2+b3

找出同类项

=a3+(-a2b+a2b)+(ab2-ab2)+b3把同类项结合

=a3+(-1+1)a2b +(1-1)ab2+b3

把同类项合并

=a3+b3

若该项没有同类项怎么办?照抄下来

(2)6a2-5b2+2ab+5b2-6a2

=6a2-6a2-5b2+5b2 +2ab

=(6a2-6a2)+(-5b2+5b2)+2ab

=2ab

方法是:(1)系数:各项系数相加作为新的系数。(2)字母以及字母的指数不变。

强调学生注意:

(1)、用画线的方法标出各多项式中的同类项,以减少运算的错误。

(2)、移项时要带着原来的符号一起移动。

(3)、两个同类项的系数互为相反数时,合并同类项,结果为零。

(4)、①、合并同类项时,只能把同类项合并为一项,不是同类项的不能合并,不能合并的项,在每一步运算中都要写上;②、同类项移动位置时,不要漏掉它的性质符号,特别注意“-”。

3、求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。

方法1解:当x=-3时

原式=3×(-3)2+4×(-3)-2×(-3)2-(-3)+(-3)2-3×(-3)-1

=3×9-12-2×9+3+9+9-1

=27-12-18+3+9+9-1 =17

方法2解:3x2+4x-2x2-x+x2-3x-1

=3x2-2x2+x2+4x-x-3x-1

=(3-2+1)x2+(4-1-3)x-1

=2x2-1

当时x=-3时,原式=2×(-3)2-1 =17

提问学生:通过求值你发现了什么?怎样更简捷的求值呢?

答:求多项式的值,常常先合并同类项,再求值,这样比较方便。

设计意图:使学生知道在此题形中先化简,再求值比较方便,帮助学生提高解题速度。

三、概括提升(课堂练习)。

1、如果两个同类项的系统互为相反数,那么合并同类项后,结果.比如-5a2b+5a2b=.2、先标出下列各多项式的同类项,再合并同类项。

(1)、3x-2x2+5+3x2-2x-5

(2)、a3+a2b+ab2-a2b-ab2-b3解答:略

设计意图:帮助学生巩固本节课所学的内容,同时也可提高学生计算能力。

四、本节你学到了什么?

合并同类项:我们把多项式中的同类项合并成一项。

合并同类项法则:(1)、把同类项的系数相加,所得的结果作为系数;(2)字母和字母的指数保持不变.(3)、求代数式的值时,先化解,再代入比较简便。

设计意图:帮助学生总结和巩固本节课所学的内容。

五、作业:P66第1题和第2题。

设计意图:帮助学生巩固本节课所学的内容

.合并同类项教学反思

通过练习,使学生熟悉并掌握同类项概念和合并同类项法则。整个教学过程来说,学生反映较好,但是课下我自己的反思,发现自己有很多地方需要注意和改进。

1、板书设计很重要,这能体现教师的讲课内容的重点,难点。而我的板书在这方面需要改进。

2、提出的问题还没有到位。在教学过程总,曾出现学生不知老师所提出问题的意图,我的语言表达不是很准确,不是很到位,这是我今后在教学方面应该加强注意和练习。

3、同类项的概念要让学生着重理解到会灵活运用。

4、探究过程是一个十分重要的过程。这时老师应该特别注意学生的反应。

5、不仅内容要传授准确,而且要强调学生做题的规范性,使学生养成良好的学习习惯。

6、在学生学习活动环节,老师应关注学生探究化简方法是否能积极思考,主动参与;是否能说出化简方法的理论依据,学生对同类项定义的理解和掌握情况对合并同类项法则的总结情况。

7、结合学校特点,发挥优势,数学科课堂教学模式还要更加深入地探索、研究,逐步形成自我教学特色。

8、在授课前要想办法,用生动有趣的图案和实物来代替抽象的理论知识,来调动学生的学习积极性,用精彩的问题设置吸引学生,用数学实验和游戏吸引学生,用生动有趣的语言、事例吸引学生。

另外,我对本节课的重点内容的把握不是很好。对学生的接受新知识的能力有所高估。在今后的教学中,应需要钻研教材,了解学生的基本情况。新知识的接受需要一个过程,突出学生主体地位,让学生在课堂上的思考、讨论、总结这也需要一个过程,培养学生的良好的学习习惯。

总之,应用教材,如何引导学生去学成为关键。这就要求我们的课堂教学模式有所改进,充分考虑学生的好奇心和荣誉感,鼓励学生多讨论多参与,让学生有机会讲述自己的见解,我们要有“度”的.进行课堂管理。不仅要注重培养学生的学习兴趣,更要尊重学生的学习兴趣,不能扼杀学生的学习热情,让学生在打好学习基础的同时,又培养了自身的能力,发展了自身的特长。

合并同类项设计教案 篇3

教学内容:

义务教育课程标准实验教科书第12册92--93页“练习与实践”3-9

教学内容:

义务教育课程标准实验教科书第12册92--93页“练习与实践”3-9

教学目标:

1、使学生进一步掌握列方程解应用题的步骤,明确其中的关键是找出数量之间的相等关系,能根据题意正确地列出方程解答两、三步计算的应用题.

2、使学生能根据应用题的特点选择恰当的方法来解答。

3、进一步培养学生分析数量关系的能力,发展学生的思维。

教学难点:

根据题目的具体情况选择合理的解题方法

设计理念:

通过不同题型的训练使学生进一步掌握列方程解决问题的基本方法,而且能使学生进一步体会到方程是描述数量关系的一种常用和有效的数学模型,列方程解决问题具有独特的方法价值。激发学生探索数学规律的兴趣,有利于学生进一步感受到用字母表示数以及列方程解决问题的优越性。

教学步骤、教师活动、学生活动

一、揭示课题

1、引入课题。

我们已经会根据几个数之间的`等量关系列出方程。今天这节课,我们着重复习根据应用题数量之间的相等关系,列方程解答,(板书课题)通过复习,要能根据题意正确地列方程来解答应用题。同时还要能根据数量关系的特点,灵活地选择算术方法或用方程来解答应用题。

2、复习解题步骤。

提问:我们过去列方程解应用题的步骤是怎样的?

板书:(1)审题,用x表示未知数;

(2)找等量关系,列方程;

(3)解方程;

(4)检验,写答案。

你认为其中最关键的是哪一步?为什么?

指出:列方程解应用题要按照解题步骤进行,其中最关键的一步是找等量关系列方程。(板书:关键:找等量关系)因为方程是根据等量关系列出来的,只有等量关系找正确,对照等量关系列出的方程才正确。

学生个别口答后再整理

二、整理与反思1、电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

2、京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

3、长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

4、完成93页第6题

(1)理解鞋的码数与厘米数的换算关系

(2)进行码数与厘米数的换算

强调:根据题目的情况,合理选择方法,列算式或列方程

5、完成93页的第7题

理解“一种药品降价10%”的含义

6、完成93页的第8题

强调:(1)两种衬衫的原价相同,由于打的折扣不同,所以现价不同。(2)108原是这两中衬衫现价的和。

7、完成93页的第9题学生独立解答,交流说说1-3每道题中数量之间的相等关系,以及怎样列方程,每个方程各是怎样解的

学生独立完成,指名说说思考过程

指名板演,集体交流,说说解题思路

两人一组,分组开展活动,适时互换角色。

三、全课总结

通过这节课的复习,你有了哪些新的认识?还有哪些疑问?

学生互说体会

四、拓展延伸

甲、乙、丙三个数的和是255,已知甲数除以乙数,乙数除以丙数都商5余1,甲、乙丙各是多少?学生课后交流、探索

合并同类项设计教案 篇4

【教学目标】

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

【重点难点】

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

【教学准备】

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

【教学过程】

一、创设情境

多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.

设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.

二、讨论(动态研究)

课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.

让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

三、讨论(静态研究)

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的`例子。

四、探索

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

五、作业

1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.

2、阅读教科书第119页的实验与探究,并思考有关问题。

合并同类项设计教案 篇5

教学目标

【知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

【过程与方法目标】

【情感态度价值观目标】

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

【教学重点】

数轴的意义及作用。

【教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,-10/3

例2、数轴上与原点距离4个长度单位的点表示的`数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

合并同类项设计教案 篇6

教学目标:

1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

2、收集统计在生活中应用的例子,整理收集数据的方法。

3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

教学过程:

一、课前预习,出示预习提纲:

1、我们学习了哪几种统计图?

2、这几种统计图各有什么特点?

3、概率的知识有哪些?

二、展示与交流

(一)提出问题

1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

2、师:先独立列出几个你想调查的问题。(写在练习本上)

3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

4、接着全班汇报交流(师罗列在黑板上)

师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

(二)收集数据和整理数据

1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

(三)开展调查

1、针对学生提出的某个问题,先组织小组有效的.开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

3、全班汇总、整理、归纳各小组数据。(板书)

4、师:分析上面的数据,你能得到哪些信息?

5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

6、师:根据这些信息,你还能提出什么数学问题?

(四)回顾统计活动

1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

3、结合生活中的例子说说收集数据有哪些方法?

(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

的实例)来说说自己的方法。

(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

合并同类项设计教案 篇7

教学目标和要求:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

3.初步体会类比和逆向思维的数学思想.

教学重点和难点:

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

难点:多项式的次数.

教学过程:

一、复习引入:

观察以上所得出的四个代数式与上节课所学单项式有何区别.

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的'口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

二、讲授新课:

1.多项式:

由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constantterm).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.

一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.

注意:

(1)多项式的次数不是所有项的次数之和;

(2)多项式的每一项都包括它前面的符号.

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)

2.例题:

例1:判断:

①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;

②多项式3n4-2n2+1的次数为4,常数项为1.

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)

例2:指出下列多项式的项和次数:

(1)3x-1+3x2;(2)4x3+2x-2y2.

解:(1)三项,二次;(2)三项,三次.

例3:指出下列多项式是几次几项式.

(1)x3-x+1;(2)x3-2x2y2+3y2.

解:(1)三次三项式;(2)四次三次式.

例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.

解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1.

(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)

三、课堂小结:

①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)

教学后记:

从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.

合并同类项设计教案 篇8

教学内容:

教材第81页例3、例4,练习十六9---14题。

教学目标:

1、经历交流、讨论、练习等学习过程,理解方程的含义和等式的性质,根据等式的性质正确熟练地解方程。

2、掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。

3、能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。

教学重点:

理解方程的含义和等式的性质。

教学难点:

较熟练地解简易方程,并能解决一些实际问题。

教具准备:

多媒体课件

教学过程:

一、导入复习

1、什么叫做方程?(方程是含有字母的等式。)能举几个是方程的式子吗?

2、什么叫做方程的解? (使方程两边左右相等的未知数的值叫做方程的解。求方程的解的过程,叫做解方程。)

3.解方程的依据是等式的性质:等式两边同时乘或除以(加或减去)相同的数,等式的大小不变。

4、出示例3 学生交流。

5、出示例4 学生交流。

二、创设情境,引出知识

1、出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)

解题过程

解:设现在平均每小时走了x千米。

2.5x=3.83

2.5x2.5=11.42.5

x=4.56

答:平均每小时走了4.56千米?

2、提出问题

这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的`一种方法。请你以小组为单位,合作自主梳理有关代数的知识。

三、分析知识建立联系

(一)学生汇报各类知识

小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。

(二)解方程与方程的解

1、具体知识

4.56是方程的解,而求这个解的过程就是解方程。

方程是含有字母的等式

补充提问:能举几个是方程的式子吗?

合并同类项设计教案 篇9

教学设计教学目标:

1.加深理解用字母表示数的意义和作用,会用字母表示数和常见的数量关系,体会用字母表示的简洁性。

2、正确理解方程的意义,会熟练地解一些简易方程,能自觉进行检验

3能通过列方程和解方程解决一些实际问题。

教学重点和难点

用字母表示数, 能通过列方程和解方程解决一些实际问题。

教学过程:

一、创设情景 ,揭示课题

1、出示字母卡片,问:看到这些字母你能立刻想到什么?生争先恐后发言。

CCTV WC km cm

同学们的课外知识真丰富,那么我们今天要学习的课内知识你们有信心学好吗? 好,那我们今天就围绕字母所涉及到的式与方程的知识进行整理和复习。(板书课题:式与方程的整理和复习)

二、教学实施

1.你们觉得用字母表示有什么优点?

教师 :用字母能简明地表达数量关系,运算定律和计算公式,为研究和解决问题带来很多方便。

2、复习用字母表示数。

(1)同学们,你们先想一想,我们学过哪些式与方程的知识呢?

(2)学生回答内容:用字母表示数、认识方程和解方程、用方程解决实际问题。

(3)同学们,今天我们就围绕这三个方面来整理和复习。大家先想想,我们在小学六年里,用字母表示过什么呢?请跟小组同学说一说吧!

(4)反馈:大家都想好了吗?谁来说说?

请举例来说明:学生的回答s=vt

(5)还可以表示什么呢?(计算公式)

你能举个例子吗?(s=ah c=4a)

(6)在简写时我们要注意什么呢?(①同一问题中,不同的数要用不同的字母表示。②在含有字母的乘法中,通常把号省略不写,而且把数写在字母的前面。)

(7)刚才我们用字母表示了数量关系、计算公式,字母还可以表示什么呢?你能举例说明吗?(运算定律,(a+b)+c=a+(b+c) )

(8)小结:用字母来可以表示用字母来表示这些式子有什么好处呢?(简便易记)

(9)小练习:P84做一做

3、复习方程

(1)请同学们先想想,什么叫方程呢?(含有未知数的等式叫方程)什么叫解方程?什么叫方程的解?它们有哪些区别?

(2)如果给你一些式子,你能判断它是不是方程呢?

6x+8=11 8x-5x=150.2 30a+5b 7x-636 55x=y (2+a)2.4=5 18=0.125

(3)你们会解这些方程吗?

(4)小结解方程的注意事项.

4.用方程解决问题

(1)出示例题3

学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?

(2)学生独立解答并思考下列问答。

1、你能用不同的.方法解答吗?

2、用方程解答步骤是什么?

3、在做题时,你想提醒大家注意什么?

4、你还有什么不明白的问题需要大家帮助解决?

(3)订正,汇报。

指名说思路。

算术法:3.832.5

方程法:

(4)学生列方程解决问题。

式与方程的整理和复习》教学设计(5)全班反馈、交流。

路程不变

实际的速度实际的时间=计划的速度计划的时间

2.5ⅹ=3.83

三 巩固练习

1、我会做

(1)六年级有a名男孩子,女孩子是男孩子的3/5,六年级一共有学生( )名。

(2)三个连续偶数,中间的一个是m,另外两个分别是( )和( ).

2、我是审判官

(1)含有未知数的式子叫方程。 ( )

(2) n表示自然数,2n就可以表示偶数。 ( )

3、解方程

36-5x=26 2x+4.5+8=14.2

4、练习十五 :第5题

四、总结。

请大家想一想:这节课我们复习了哪些知识?你有什么收获?

五、板书设计

式与方程的整理和复习

(1) 例题3

学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?

解法一:

解 :设平均每小时走了Ⅹ千米

实际的速度实际的时间=计划的速度计划的时间

2.5ⅹ=3.83

ⅹ=11.42.5

ⅹ =4.56

答:平均每小时走了4.56千米。

解法二:

3.832.5

=11.42.5

=4.56

答:平均每小时走了4.56千米。

推荐阅读

小编精心推荐

合并同类项课件 | 同类项课件 | 设计教案 | 合并通知
上一篇:2024新教师个人教学工作总结500字九篇 下一篇:最新作为一名传承人的工作总结推荐17篇
back_img
推荐标签