back_img
好工具 >范文 >实用文

有理数课件精华

2023-11-03 14:24:34 有理数课件

【#实用文# #有理数课件精华#】编辑特别推荐您阅读一下“有理数课件”,每一位教师都需要在上课前准备好自己的教案和课件。本学期又到了撰写教案和制作课件的时候了。教案是课堂教学的重要支持材料。请大家认真阅读以下提供的信息,仅供参考!

有理数课件(篇1)

一、有理数的意义

1.有理数的分类

知识点:大于零的数叫正数,在正数前面加上﹣(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上﹣号后这个量就有了完全相反的意义;3, ,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。

2.数轴

知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数

3. 相反数

知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 绝对值

知识点: 一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a0,则∣a∣=a. 若a=0,则∣a∣=0. 若a0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算

1. 有理数的加法

知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)

多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

2. 有理数的减法

知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即 a-b=a+(-b)。

注意:运算符号+加号、-减号与性质符号+正号、-负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

3. 有理数的加减混合运算

知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把+号省略,使算式变得更加简洁。

4. 有理数的乘法

知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。

乘法交换律:ab=ba 乘法结合律:abc=a(bc) 乘法分配律:a(b+c)=ab+bc

5. 有理数的除法

知识点:除法法则1:除以一个数等于乘上这数的倒数,即ab= =a (b0即0不能做除数)。

除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

倒数:乘积是1的两数互为倒数,即a =1(a0),0没有倒数。

注意:倒数与相反数的区别

6. 有理数的乘方

知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。

乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

7. 有理数的混合运算

知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

【巩固练习1】一.选择题

1. 关于数0,以下各种说法中,错误的是 ( )

A. 0是整数 B. 0是偶数 C. 0是自然数 D. 0既不是正数也不是负数

2. 3.782: ( )

A. 是负数,不是分数 B. 不是分数,是有理数 C. 是分数,不是有理数 D. 是分数,也是负数

二、将下列各数填入相应的集合中。 ,-1,12,0,-3.01,0.62,-15,- ,180,-42,-45%,,1。

整数:______________________ 自然数:___________________________

正数:______________________ 负数: ___________________________

偶数:______________________ 奇数: ___________________________

分数:______________________ 非负数:___________________________

非负整数: _________________ 非正分数:_________________________

非负有理数:________________ 有理数: __________________________

三、 填空题

1、一个数的绝对值是 6 ,这个数是 。 2、绝对值小于3的整数有 个。

3、 的相反数的倒数是 。 4、计算: 。

5、如果 ,那么 a= 。 6、如果规定上升8米记作8米,那么-7米表示 ______________。

7、最小的正整数是____,最大的负整数是_____,绝对值最小的有理数是_______

8、 河道中的水位比正常水位低0.2m记作-0.2m,那么比正常水位高0.1m记作________。

9、一潜艇所在深度是-80米,一条鲨鱼在艇上30m处,鲨鱼所在的深度是________。

【巩固练习2】一.填空题

1. 数轴上与表示﹣2点相距3个单位的点所表示的数是________。

2. 数轴表示+3和﹣3的点离开原点的距离是______个单位,这两个点的位置分别在_______点右边和左边。

3. 在有理数中最大的负整数是________, 最小的正整数是________, 最大的非正数是________, 最小的非负数是________.

4. 用或号填空:

1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;

5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;

8) ﹣ ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .

【巩固练习3】一.填空题

1. 如果一个数的相反数是它本身, 则这个数是________.

2. 如果一个数的相反数是最小的正整数, 则这个数是________.

3. 若 , 则a与b________; 若 , 则a与b________; 若a+b=0, 则a与b________.

4. 在数轴上与-3距离4个单位的点表示的数是

5.写出大于-4且小于3的所有整数为______________;

二、 求下列各数的相反数

0.26 ; ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b 。

三、 在数轴上表示出下列各数的相反数的点,并比较大小。

,4,﹣1.5, ,0,1,8,﹣2,﹣(﹣4.5),∣ ∣

【巩固练习4】一.选择题

1. ﹣∣﹣3∣是 ( ) A. 正数 B. 负数 C. 正数或0 D. 负数或0

2. 绝对值最小的整数是 ( ) A. 0 B. 1 C. 1 D. 1和-1

二、填空题 1.若a= , 则∣a∣=________; 若∣a∣=3, 则a=________.

2.﹣∣﹣ ∣=______; ∣﹣ ∣-∣﹣ ∣=______; ∣﹣0.77∣∣+ ∣=_______;

3.绝对值小于4的负整数有 个,正整数有 个,整数有 个

三、解答题

1. 已知∣x+y+3∣=0,求∣x+y∣的值。

2. 已知 A,B是数轴上两点,A点表示﹣1,B点表示3.5,求A,B两点间的距离。

3. 已知:∣a+2∣+∣b-3∣=0,求2a2-b+1的值。

【巩固练习5】计算:1) ﹣ - + -( ); 2) 1-2+3-4+5-6++99-100;

3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4) 。

【巩固练习6】计算:1)( ) 2) 3)

4)( ) 5) ( ) ; 6) (-5);

【巩固练习7】1.计算:(-5)3; -53; ; ;(-1)20xx; 3。

2. 若∣x+1∣+(2x-y+4)2= 0 ,求代数式x5y+xy5的值。

【巩固练习8】计算:(1)3 ; (2) (3) (4)

(5) (6) (7) (8)

(9) (10)32-∣(-5)3∣ -18∣-(-3)2∣;

(11) -3- -6∣ ∣3; (12)(-1)5[ (-4)+ (-0.4)]

(13)如果 ,求 的值.

一、 选择题(10小题,每小题3分,共30分,答案填入表格中)

1. 在下列各数中,-3.8,+5,0,- 1 2 , 3 5 ,-4,中,属于负数的个数为( )

A.2个 B.3个 C.4个 D.5个

2. 计算:-6+4的结果是( )

A.2 B.10 C.-2 D.-10

3. 一个数的倒数等于它本身的数是( )

A.1 B. C.1 D.0

4. 下列判断错误的是( )

A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;

C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;

5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是( )

A.a0c B.bac

C.b

6.两个有理数的和是正数,积是负数,则这两个有理数( )

A.都是正数; B.都是负数;

C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。

7.若│a│=8,│b│=5,且a + b0,那么a-b的值是( )

A.3或13 B.13或-13 C.3或-3 D.-3或-13

8. 大于-1999而小于20xx的所有整数的和是( )

A.-1999 B.-1998 C.1999 D.20xx

9. 当n为正整数时, 的值是( )

A.0 B.2 C. D.2或

10. 补充下列表格:

31 32 33 34 35 36 37

3 9 27 81 243

根据表格中个位数的规律可知,325的个位数是( )

A.1 B.3 C.7 D.9

二、填空题(8小题,每小题2分,共16分)

11. 的相反数是 .

12.若水位上升20cm记作+20cm,则-15cm表示__________________.

13.4个-3相乘写成乘方的形式是__________________.

14.比较大小: .

15. 在数轴上距2.5有3.5个单位长度的点所表示的数是 .

16. 用偶数或奇数填:当 为_________时,

17. 一根2米长的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,

第五次后剩下的长度为______米.

18. 观察下列图形:

它们是按一定规律排列的,依照此规律,第10个图形共有 个.

三、解答题(6小题,每小题5分,共30分)

19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)6- (-4)

21. (- + - )(-12) 22. 16(-2)3-(- )(-4)2

23. (用简便方法) 24. - -[-5 + (0.2 -1)(-1 )]

25. 若│a│=2,b=-3,c是最大的负整数,求a + b-c的值.(6分)

26.某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米

处;B店位于O店的北面1千米处,C店在O店的北面2千米处.

(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.

在数轴上分别表示出O,A,B,C的位置吗?(4分)

(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,最后回到O店,

那么走的最短路程是多少千米?(4分)

27.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:

星期 一 二 三 四 五

每股涨跌 +2.20 +1.42 -0.80 -2.52 +1.30

(1)星期三收盘时,该股票涨或跌了多少元?(4分)

(2)本周内该股票的最高价是每股多少元?最底价是每股多少元?(2分)

(3)已知小杨买进股票时付了1.5的手续费,卖出时还需要付成交额的1.5的手续费和1的交易税,

如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何? (4分)

有理数课件(篇2)

一、教材分析:

“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.

鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

1 、知识目标:

经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。

2 、能力目标:

经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。

3 、情感目标:

在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。

为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.

二、学情分析:

我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。

在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。

此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控。

三、教法选择及学法指导:

《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。

上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的.减法法则的全过程,体验知识产生和发展的全过程。

四、过程分析:

教学环节教学活动设计设计说明

一、创设情境,自然引入

1 、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的?

2 、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4 –(– 3)后引入课题:有理数的减法

(板书课题)通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础.

思考:从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣.同时这也符合七年级学生的认知特征,使学生乐于进一步探索.

二、探索规律,归纳结论

在学生提出可以用4 –(– 3)计算乌鲁木齐的温差后,教师鼓励学生充分探索计算4 –(– 3)的方法,得出结果为7。

在学生得出4 –(– 3)=7后,教师引导学生比较4 –(– 3)=7与4+3=7这两个算式及其结果.

在学生对有理数的减法计算提出初步的猜想“减去一个数等于加上这个数的相反数”后,教师设问:

只有4 –(– 3)=4+3=7这一个例子,你能不能断定这个猜想成立?

引导学生通过列举具有不同代表性的特例,如:正数减去正数、正数减去零、正数减去负数、负数减去正数、负数减去零、负数减去负数、零减去正数、零减去零、零减去负数等.

最后请学生根据上面的数学活动经验自主总结归纳有理数的减法法则.(教师板书这一法则)学生得出结果的方法可能不一样,教学中只要是合理的都应鼓励。

如采取逆运算的方法,或利用温度计直接数读数的方法等。

对4 –(– 3)=7与4+3=7的观察、比较,是进一步探索有理数减法法则的基础.可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系。

思考:从提出猜想到得出正确得结论之间有一个探索验证的过程,这个过程正是新课程改革所提倡的“做数学”的过程,教学中要提供足够的时间让学生探索、交流。

学生通过相互补充,不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则.而这个“举例”过程,正是一个“数学化”的过程,正是一种对数学素养的培养。

学生的归纳可能不规范,教师可请学生互相交流、补充使之规范,从而培养学生的抽象概括能力及口头表达能力。

三、例题讲解,即时反馈

1 、师生共同完成P53例1,其中第(1)小题教师讲解,其余各题请学生完成.

在完成例1后,教学中采用分组竞赛的方法及时处理P54 “随堂练习”.

2 、师生共同完成P53例2 、 P54例3

教师要通过引导学生分析实际情境,让学生在实际情境中进一步体会减法的意义,并熟练利用减法法则进行减法运算。

教师讲解第(1)小题时要点明算理,规范解答。

互动交流式的练习方式让学生的学习更积极主动.学生在活动中能体会参与数学活动的乐趣。

例2 、例3是实际问题,它们的解答有利于培养学生“用数学”的意识。

四、拓展应用

师生一起分析P55的习题第5题.在弄清题意后,请学生填写方阵图.

解决问题的核心是找到“每个数都加上的同一个数”是什么,这就是有理数的减法在这个实际情境下的应用.

另一方面,本题也提供了一个三阶幻方的一般填法,拓展了知识面,并为“试一试”的思考。

五、课堂总结

多媒体出示总结性问题:

1 、这一节课我们一起学习了哪些知识?

2 、对这些内容你有什么体会,请与你的同伴交流。

鼓励学生积极发言,增进师生、生生之间的交流、互动。

六、布置作业

1 、课堂作业:

P54—55习题2.6第1 、 2 、 3 、 4题

2 、课外思考:

P55习题2.6试一试利用课堂作业及时反馈本课重、难点。

利用课外思考给部分学生提供进一步发展的机会。

有理数课件(篇3)

一、教材分析

教材的地位和作用

本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.

二、目标界定

常言说,好方法不如正确的方向,数学课堂上的目标就是一节课的灵魂和方向标,为此结合有理数在数学数体系中的位置以及学生已有知识和认知规律,我制定了以下三维目标

知识:有理数的概念及分类。

方法:数学分类方法。

情感:培养学生选定标准、严密分类的数学素养。

三、 教学重点、难点及突破策略:

教学重点:有理数的概念。

教学难点:正确理解分类的标准和按一定的标准进行分类;合作交流、查找资料进行难点突破。

四、说教学流程

鉴于初一年级学生的年龄特点,及已有知识和认知的规律。他们对概念的理解能力,分析剖析、问题的能力都不强,精神不能长时间集中,但思维比较活跃、好奇心比较强。我决定采取启发式教学法及激趣、设疑情感性教学,创设问题情境,引导学生主动思考,用大量的实例和生动、严密的数学语言激发学生学习兴趣,调节学习情绪。

本节课通过创设问题情境导入课题;阅读质疑,自主探究;多元互动,合作探究;训练检测,目标探究;迁移运用,拓展探究五个环节完成本课时的学习。

导入:(1分钟)有人说,中国汉字最具创造力,一个字可以写成一幅画,那么我抓住有理数一词的字面意思,巧设课引:同学们,看课题:教师直接板书课题《有理数》,什么是有理数呢?难道咱们今天要给数的家族评理来了吗?看哪些是有理的数?要想弄个明白,请把心思投入这节课的学习。

行家一再提倡:教师不是要教给学生知识,而是教给他们学知识和使用知识的方法。所以,我以自主阅读、质疑、独立思考、合作探究贯穿学生获取知识的全过程。

阅读质疑,自主探究(10分钟)

1、自主阅读课本第6页,(1)找到有理数的概念。(2)明确有理数(按整数和分数)的分类。2.记录你对问题的理解及疑惑。

2、阅读提示:深入剖析,围绕下列问题阅读与思考:

通过最近的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?_______,_________,______。(比如正负数、零或整数分数,突出其不同类。为下面的按不同标准分类埋伏笔。)

问题展示(1):观察三位同学所写的数做一下分类,该分为几类,又该怎样分呢?请认真思考后把自己的想法与别人交流。

分为类,分别是:

归纳:

统称为整数,统称为分数统称为有理数.

(2):我们是否可以把上面的数换另一种角度进行两类?如果可以,应怎样分呢?(正负数和零)

3、数集概念解释:深奥道理浅显化,为使学生易于接受数集这一概念,我要举生活中物以类聚人以群分的例子,使道理生活化,并能够借此对学生进行思想品德教育。把一些数放在一起,就组成了一些数的集合。如所有的整数放在一起就组成了整数集合。数集一般用圆圈或大括号表示。

多元互动合作探究(10分钟的时间)

整体把握知识点,再次阅读课本6--7页的相关内容,自主加合作重点梳理有理数分类的两种方法(整数和分数;正负数和零)和不同的数集。

如所有的正数组成正数集合,所有的负数组成负数集合;零和负数统称为_非正数集合,零和正数统称为非负数集合。

训练检测目标探究(10分钟)

有人说,知识就是力量,使用知识才可以使知识的能量进行释放。相信大家有能力使用今天所学的知识完成下面的题目。

1、下列说法中不正确的是……………………………………………()

A.-3.14既是负数,分数,也是有理数

B.0既不是正数,也不是负数,但是整数

C.-xxxx既是负数,也是整数,但不是有理数

D.O是正数和负数的分界

2、下列说法正确的是()

A、整数就是正整数和负整数B、分数包括正分数、负分数

C、正有理数和负有理数组成全体有理数D、一个数不是正数就是负数。

3、下列一定是有理数的是()

A、πB、aC、a+2D、

3、、判断题:(打“√”或“×”)

(1)、自然数是整数。﹝﹞

(2)、有理数只包括正数和负数。﹝﹞

(3)、我们知道了有理数有两种分类方法。﹝﹞

(4)、零是最小的自然数。﹝﹞

(5)、正整数包括零和自然数。﹝﹞

(6)任何分数和小数都是有理数。﹝﹞

4、完成课本第6--7页练习第1、2题。尤其提醒学生:小数也要分在分数集合内;集合圈内的省略号表示本集合中的数是无限的,而本题中只填了所给的几个数,所以用省略号。

5、图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?____________

正数集合整数集合

迁移应用拓展探究(9分钟)

学习链接

1.本节课学了哪些数学知识:

2.本节课学会的数学方法及数学思想:

3.本节知识的梳理过程中,应提醒大家注意什么问题?(如概念分类混淆)

二.学习链接2

.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗?

①1,-1,1,-1,1,-1,1,-l,____,____,____,…;

②1,-2,3,-4,5,-6,7,-8,____,____,____,…;

提示学生:学习这类型题目应从符号和数字两方面考虑。

三、有理数含义揭晓:有理数原意为可写成两个整数的比的数,并不是字面意思理解为有一定道理的数。因为所有的整数都可看着分母是1;零可看着它与零以外的所有数的比;有限小数和无限循环小数都可以化成分数,所以它们都是有理数;而无限不循环小数不能写成两个整数比的形式,所以不是有理数,如π,它是将来要学习的无理数。

知识赏阅:数的由来与发展(2分钟)

人类在漫长的生活实践中,由于记事和分配物品等方面的需要,逐渐产生了数的概念。我国古代《易经》一书中有“结绳而治”的记载.现

在我们已经认识了自然数、负整数、分数和小数,这些都属于有理数.你了解这些数的由来与发展吗?请到图书馆或上因特网查找有关数的发展史的资料,写一篇数学小论文,介绍数的由来与发展.

撰写“数的发展与由来”的小论文,主要是让学生体会数学在人类文明发展与进步中的作用,这也是一个对学生能力的培养的机会.应该告诉学生到图书馆查阅资料及搜索网站的方法.如用google搜索,怎样打如关键词,能找到什么资料,怎样下载,对下载的资料怎样进行裁剪等等..

课堂小结:这节课咱们既获得了有理数概念、分类,了解了一些数集,又学会了一些数学思想和方法,并从中感受到了数学的逻辑性和严密性。相信大家在以后的数学学习中会越学越有趣,数学素养会越来越深。

板书设计:有理数

概念有理数

数集

分类有理数分类

数集种类

作业:

1、课本第4页第1题

2、基础训练第一课时

这篇初一上册数学说课稿:《有理数》说课稿就介绍到这里了,希望大家喜欢!

有理数课件(篇4)

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生数学的兴趣。

3、在生活中,仅有整数和分数够用了吗有没有比0小的数如果有,那叫做什么数

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示、

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂小练】:

1、 P3第一题到第四题(直接做在课本上)。

2、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,―4万元表示________________。

3、已知下列各数: , ,3、14,+3065,0,―239;

则正数有_____________________;负数有____________________。

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1、零下15℃,表示为_________,比O℃低4℃的温度是_________。

2、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为―5米,其中最高处为_______地,最低处为_______地、

3、甲比乙大―3岁表示的意义是______________________。

4、如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

有理数课件(篇5)

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.

如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

(1)计算(-2)+(-3).

在方框中放进2个 和3个 :

因此,(-2)+(-3)= -5.

思考: 两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的'符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

(三)验证明确结论:

例1 计算下列算式的结果,并说明理由:

(1) 180 +(-10) (2) (-10)+(-1);

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(7) 0+(+2); (8) 0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7); (2)(-13)+5;

全班学生书面练习,四位学生板演,教师对学生板演进行讲评.

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2. 有理数加法法则及其应用。

3. 注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

有理数课件(篇6)

有理数大班教案

一、教案概述

本教案适用于大班学生,主要介绍有理数的概念、性质以及运算规则。通过多种教学方法,使学生初步掌握有理数的基本概念和运算技巧。

二、教学目标

1. 了解有理数的定义和性质;

2. 了解整数和分数在数轴上的位置;

3. 掌握有理数的四则运算规则;

4. 运用所学知识解决实际问题。

三、教学重难点

1. 有理数的概念和性质;

2. 有理数的加法和减法运算;

3. 有理数的乘法和除法运算;

4. 运用所学知识解决实际问题。

四、教学准备

1. 教学课件;

2. 数轴模型;

3. 练习题、试卷等教学辅助材料。

五、教学过程

1. 导入(10分钟)

教师通过展示数轴模型,引导学生回忆整数和分数在数轴上的位置,并通过提问引发学生对有理数的思考。

2. 讲授有理数的概念和性质(15分钟)

教师简要讲解有理数的定义和性质,强调有理数既包括整数又包括分数,并提醒学生注意有理数的正负性。

3. 有理数的加法和减法运算(25分钟)

教师通过具体例子和数轴模型演示有理数的加法和减法运算,引导学生掌握运算规则,并进行简单练习。

4. 有理数的乘法和除法运算(25分钟)

教师通过具体例子和数轴模型演示有理数的乘法和除法运算,引导学生掌握运算规则,并进行简单练习。

5. 解决实际问题(20分钟)

教师提供一些实际问题,引导学生运用所学知识解决问题,培养学生的应用能力。

六、课堂练习(15分钟)

教师提供一些练习题,让学生进行课堂练习,检验他们对所学知识的掌握情况。

七、课堂总结(10分钟)

教师对本节课的重点知识进行总结,并对下节课的内容进行简要展示。

八、课后作业

布置一些习题作为课后作业,巩固学生对有理数的理解和运算技巧。

九、教学反思

通过本节课的教学,学生对有理数的概念和运算规则有了初步了解,并通过练习和解决实际问题,巩固了所学知识。但是,本节课仍然存在一些不足之处,如教学时间分配不合理、教学方法需要更加多元化等,需要进一步改进。

有理数课件(篇7)

人教版数学有理数乘法教学设计

设计理念

1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的.活动来获取、理解和掌握这些知识。

2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。

3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标

1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。

2.使学生掌握多个有理数相乘的积的符号法则。

过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。

情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点 乘法的符号法则和乘法的运算律。

难点 积的符号的确定。

教学过程

一、复习引入;

观察并计算

①(-2)3456

②(-2)(-3)456

③(-2)(-3)(-4)56

④(-2)(-3)(-4)(-5)6

⑤(-2)(-3)(-4)(-5)(-6)

二、自主学习探索:

1.以上几个式子有何区别与联系?

2.你认为多个数相乘先干什么?

3.你能总结出什么规律?

有理数课件(篇8)

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例

有理数课件(篇9)

教学目标:

1、知识与技能:

了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。

2、过程与方法:

在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。

重点、难点:

1、重点:用科学记数法表示绝对值较大的数。

2、难点:熟练用科学记数法表示绝对值较大的数。

教学过程:

一、创设情景,导入新课

太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。

二、合作交流,解读探究

1、填空

= , = , =

2.8×= ,2.8×= ,2.8×=

2、学生探究:从前面的填空可知:

100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×

从上面你能发现什么规律吗?

(1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。

三、应用迁移,巩固提高

1、做一做:课本P44例2

解答见教材,注意10的指数比原数的整数位少1

2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

3、做一做:用科学记数法表示下列各数:

(1) 108000;(2)-3200000

两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。

4、P44练习第1、2、3题

四、总结反思

用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。

五、作业:P45习题1.6A组第3、4、5题

有理数课件(篇10)

1.4.1有理数的乘法(第一课时)

1.教材分析

1.1教材的地位与作用

教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。

1.2教材的重难点分析 1.2.1教学重点

运用有理数乘法法则正确进行计算。 1.2.2教学难点

有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;

2.2过程与方法

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观

通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析

本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。

附:板书设计

“有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则

前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养

有理数乘法两步骤 练习处

和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。

“有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。

“有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。

在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。

在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维

方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。

有理数课件(篇11)

学习目标

1、掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算;

2、在有理数的混合运算中,能合理地使用运算律简化运算。

教学重点和难点

重点:有理数的混合运算.

难点:在有理数的混合运算中,能合理地使用运算律简化运算。注意符号问题。

突破:从 小学四则混合运算出发, 采用以旧引新,课本示范,学生讨论,教师点拨。

教学过程

环节1 、温故知新

1、计算 ( 三分钟练习 ) :

( 1)(-2) 3 ; (2)-2 3 ; ( 3)-7+3-6 ; ( 4)(-3) × (-8) × 25 ;

( 5)(-616) ÷ (-28) ; (6)0 21 ; ( 7)3.4 × 10 4 ÷ (-5)、

2、说一说我们学过的有理数的运算律:

加法交换律:

加法结合律:

乘法交换律:

乘法结合律:

乘法分配律:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?本节课我们学习有理数的混合运算

环节2、自主学习:

师:请同学们先阅读完预习要求,再用15分钟时间进行预习。

预习要求:

请同学们利用15分钟的自学时间完成学习内容中的三个模块, 自学中保持自学环境的安静,认真高效的完成自学任务。

自学内容要求:

1 、完成法则自学模块,理解 掌握有理数混合运算的法则;

2 、法则的运用。完成例1 、例2 的二个自学模块。

自学模块(一)

仔细阅读课本66 页第一段,完成下列内容。

1、 计算:

(1) -2 ×32=

(2) (-2 ×3 )2 =

2、 运算顺序有什么不同?

3、 小组交流:

回顾小学学过的四则混合运算顺序,有理数混合运算的顺序是怎样规定的?

有理数混合运算法则:―――――――――――――――――――――

―――――――――――――――――――――

自学模块(二)

例1计算:6 1 1 5

—×(-—-—)÷—

5 3 2 4

根据以下提示分析例1 计算

1、例1 中是一些什么样的运算?像含有这样运算的习题与在小学时的运算顺序一样吗?

观察运算:题目中有乘法、除法、减法运算,还有小括号.

思考顺序:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.

动笔计算:按思考的步骤进行计算,在计算时不要“跳步”太多。

检查结果:是否正确.

2、写出例1计算过程

3、巩固练习

试用两种方法计算:

16×(-3/4+5/8)÷(-2)

① ;

②、

使用运算律,解题步骤是怎样的?能计算出相同结果吗?但哪种方法更简便?

4、小组交流

自学模块(三)

例2计算:(-4) 2 ×[( -1) 5 +3/4+ (-1/2) 3 ]

1、根据以下提示分析例2计算

仿照例1.

观察运算:

思考顺序:

动笔计算:

检查结果:

2、写出例2计算过程

3、巩固练习

( 1 )(-4 × 3 2 )-(-4 × 3) 2、

(2)(-2) 2 -(-5 2 ) × (-1) 5 +87 ÷ (-3) × (-1) 4、

3、小组交流

环节3、达标检测

( 1)1÷(-1)+0÷4-(-4)(-1) ;

( 2)18+32÷(-2) 3 -(-4) 2 ×5、

(3)计算( 题中的字母均为自然数) :

[ (-2) 4 +(-4) 2 · (-1) 7 ] 2m · (5 3 +3 5 )、

以小组为单位计分,积分最高的组为优胜组.

环节4、课堂小结

今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

教师引导学生一起总结有理数混合运算的规律.

1、先乘方,再——————————————————————

2、同级运算———————————————————————

3、若有括号———————————————————————

在有理数的混合运算中,能合理地使用运算律简化运算,并注意符号问题。

环节5、课后作业

课本67页习题

推荐阅读

小编精心推荐

有理数乘法课件 | 有理数教案 | 有理数乘法教案 | 有理数加法教案
上一篇:幼儿园保教工作总结范本十篇 下一篇:毕业生登记中的自我鉴定怎么写
back_img
推荐标签