有理数的乘法课件(篇1)
一、说教材:
(一)地位、作用:
本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:
1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力
2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率
3、能运用乘法运算律简化运算,进一步提高学生的运算能力
(三)重点、难点:
运用乘法的运算律进行乘法运算
运用乘法法则和乘法运算律进行运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教材程序:
第一步
现在用我们所学的知识,大家解一下这几道题:
6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
乘法的交换律:两个数相乘,交换因式的位置,积不变。
ab=ba第二步
现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律
乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练
(-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步
大家再试试这2道题
(-4+5+1)×6 -4×6+5×6+1×6你发现了什么?
一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。
乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法
例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法
解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦
技能训练,先动手试一试,再讲解
70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+41)解:原式=(30-1/25)×5解:原式=20×5+1 =14 ×200 =30× 5-1/25× 5 =101 =2800 =150-1/5
三、巩固训练,熟练技能=149 4/5 30×(1/2-2/3+0.4) 5 24/13×12 19 23/24×24 (1/3 + 1/4 - 1/2) ×12
四、布置作业P33练习
新课堂作业P20第8题
有理数的乘法课件(篇2)
①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.
通过对问题的变式探索,培养观察、分析、抽象的能力.
通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.
做一做 出示一组算式,请同学们用计算器计算并找出它们的.规律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
想一想 你们发现积的符号与因数的符号之间的关系如何?
总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.
两数相乘,同号得正,异号得负.
想一想 两数相乘,积的绝对值是怎么得到的呢?
有理数的乘法课件(篇3)
人教版数学有理数乘法教学设计
设计理念
1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的.活动来获取、理解和掌握这些知识。
2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
教学目标
1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。
2.使学生掌握多个有理数相乘的积的符号法则。
过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。
情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。
重点 乘法的符号法则和乘法的运算律。
难点 积的符号的确定。
教学过程
一、复习引入;
观察并计算
①(-2)3456
②(-2)(-3)456
③(-2)(-3)(-4)56
④(-2)(-3)(-4)(-5)6
⑤(-2)(-3)(-4)(-5)(-6)
二、自主学习探索:
1.以上几个式子有何区别与联系?
2.你认为多个数相乘先干什么?
3.你能总结出什么规律?
有理数的乘法课件(篇4)
1.多个有理数相乘,可以把它们按顺序依次相乘。
例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我们知道计算有理数的乘法,关键是确定积的符号。
观察:下列各式的积是正的还是负的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。
教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。
2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。
有理数的乘法课件(篇5)
一、 学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的`学习气氛。
三、 教学目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
通过学生自己探索出法则,让学生获得成功的喜悦。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
2看作向东运动2米,×3看作向原方向运动3次。
-2看作向西运动2米,×3看作向原方向运动3次。
2看作向东运动2米,×(-3)看作向反方向运动3次。
-2看作向西运动2米,×(-3)看作向反方向运动3次。
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
a.符号:在上述4个式子中,我们只看符号,有什么规律?
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做 P76 练习1(1)(3),教师评析。
4、 讨论对比,使学生知识系统化。
有理数的乘法课件(篇6)
1.熟练有理数乘法法则;
你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?
下列计算若按顺序依次相乘怎样算?用运算律为什么能简化运算?
运用运算律真的能节省时间吗?分两个大组,比一比:
运用乘法交换律和结合律简化运算:
(1)1999×125×8;(2)-1097××().
1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?
2.如右图,你会用两种方法求长方形ABCD的面积吗?
1.计算(注意运用分配律简化运算):
(1)-6×(100-);(2)×(-12).
(2)2×(-3)×4×(-5)×(-6)×7×8×9×(-10);
(3)2×(-3)×4×(-5)×(-6)×0×7×8×9×(-10);
4.下列各式的积(幂)是正的'还是负的?为什么?
(1)(-3)×(-3)×(-3)×(-3)×(-3).
5.运用乘法交换律和结合律简化运算:
(1)-98××(-0.6);(2)-1999××(-)××()
1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?
2.运用分配律化简下列的式子:
(1)例3x+9x+x(2)13x-20x+5x;
=13x;
(3)12π-18π-9π;(4)-z-7z-8z.
有理数的乘法课件(篇7)
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
教学分析:
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
有理数的乘法课件(篇8)
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
三、课堂练习
计算(能简便的尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
(7)24×(—17)+24×(—9).
四、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
五、练习设计
1.计算:
(7)(—7.33)×42.07+(—2.07)(—7.33);
(8)(—53.02)(—69.3)+(—130.7)(—5.02);
六、布置作业:
《伴你学》有理数的乘法第二课时
有理数的乘法课件(篇9)
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[
4.根据有理数加减运算中引出的新问题 主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有 理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生 比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结 论 ,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例 某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a =-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9;
(4)(-6)×1; (5)(-6)×(-1); (6) 6×(-1);
(7)(-6)×0; (8)0×(-6);
2. 口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负 数,也可以是正数或0.
3.填空:
(1)1×(-6)=______;(2)1+(-6)=____ ___;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
4.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法 法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5) -4.8×(-1.25); (6)-4.5×(-0.32).
2.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab _______ _0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
( 4)如果a<0时,那么a __________2a.
探究活动
问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1 ?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
有理数的乘法课件(篇10)
【教学目标】
1.熟练有理数乘法法则;
2.探索运用乘法运算律简化运算.
【对话探索设计】
〖探索1
你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?
〖阅读理解
乘法交换律和结合律(见P40)
〖探索2
下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?
(1)252004 (2) - 1999
〖探索3
运用运算律真的能节省时间吗?分两个大组,比一比:
计算(-198)
〖练习1
运用乘法交换律和结合律简化运算:
(1)1999125 (2) -1097
〖探索4
1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?
2.如右图,你会用两种方法求长方形ABCD的面积吗?
〖例题学习
P41.例5
〖作业
P41.练习
〖补充作业
1.计算(注意运用分配律简化运算):
(1)-6(100-); (2)(-12).
(2)2(-3)4(-5)(-6)789(-10);
(3) 2(-3)4(-5)(-6)0789(-10);
4.下列各式的积(幂)是正的还是负的?为什么?
(1)(-3)(-3)(-3)(-3)(-3).
5.运用乘法交换律和结合律简化运算:
(1)-98(-0.6); (2)-1999(-)()
【补充练习】
1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?
2.运用分配律化简下列的式子:
(1)例3x+9x+x (2)13x-20x+5x;
=(3+9+1)x
=13x;
(3)12-9 (4)-z-7z-8z.
有理数的乘法课件(篇11)
1、知识积累与疏导:通过蜗牛爬行模型的演示,循序渐进,导出有理数乘法法则。认知率100%。毛
2、技能掌握与指导:能运用有理数乘法法则进行计算,掌握两个有理数相乘的方法和步骤。利用率100%。
3、智能的提高与训导:在练习等师生互动、生生互动的活动过程中,学会与老师及与其他同学交流,沟通和合作,准确表达自己的.思维过程。互动率95%。
4、情感修炼与开导:通过练习中的沟通与合作,领悟有理数乘法与小学里数的乘法的联系、发展和进步。投入率95%。
5、观念确认与引导:通过导出、运用法则等活动,加深理解有理数乘法法则;通过与小学里数的乘法法则的比较及法则的导入,培养学生的观察、分析能力,渗透数形结合和转化的数学思想。
把全班学生分成46人一组。
1、每组学生演示自己制作的蜗牛爬行的模型(模型制作事先完成),如课本P37的四种情况,讨论完成P37的五个填空。
2、全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
问:法则(1)有没有把所有的有理数都包括在内?
指出:正数与0相乘得0,这里规定负数与0相乘也得0。
所以得法则(2) 任何数同0相乘,都得0。
有理数的乘法课件(篇12)
一、教学目标
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;
2.培养学生观察、归纳、概括及运算能力
3 使学生掌握多个有理数相乘的积的符号法则;
二、教学重点和难点
重点:有理数乘法的运算.
难点:有理数乘法中的符号法则.
三.教学手段
现代课堂教学手段
四.教学方法
启发式教学
五、教学过程
(一)、研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解①32=6
答:上升了6厘米.
问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)
把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.
把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.