【#实用文# #认识负数课件#】笔者对“认识负数课件”问题进行了详细研究,并补充了相关资料,希望所提建议能为您提供一些指引。教案课件是教师在课堂上非常重要的辅助工具,因此我们的教师需要认真对待撰写。详尽的教学教案可以帮助教师更好地讲解课程内容。
认识负数课件 篇1
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:
6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示气温折线统计图)。
哈尔滨:-15 ℃~-3 ℃
北 京: -5 ℃~5 ℃
深 圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的.温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么? 现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类: (完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:负数认识。
7.负数的历史。
(1)介绍。
其实,负数是“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。 板书设计
负数的认识和意义
正数+6 、+1500 、2.5
负数-6 、-1500 、-2.5
0既不是正数也不是负数
第二课时 用数轴表示正负数 总第二课时
教学目标
认识数轴,并会用数轴上的点表示正负数和0.
教学重点和难点
理解数轴表示正负数的意义,会用数轴上的点表示正负数;同时能够由数轴上的已知点说出其所表示的数。
教学设计
一、以复习负数的意义导入
2小黑板出示题目:用正数和负数表示下列各量。指名学生将答案写在小黑板上,集体订正。
(1)零上24摄氏度表示为( ),零下3.5摄氏度表示为()。
(2)足球比赛中,赢2球计作( )球,输1球记作()球。
(3)小丽上个月存了压岁钱200元,存折上显示( ),这个星期郊游费取出50元,存折上显示为( )。
(4)超过警戒水位2米,可记作(),正好到警戒水位可记作()。 3.我们已经知道了负数的意义,这节课我们将继续探究生活中的负数,并学习一个可以直观表示负数的好方法。
二、创设情境,探究新知
1.在游戏中体会运动变化中的负数
(1)以讲台为起点,面朝教室门为前,也为正,分为两组,每组派2名代表,一名代表负责根据我的口令向相反的方向走,而另一名同学则在黑板上记录自己同伴走的情况,我们看哪一组反应又快又正确。
(2)游戏过后,提问:如果不用按照相反的口令,直接按照口令执行,那么“记作6步” 他应怎么走?“记作—4步”呢?(指名学生回答)
2.教学第5页例3,学会用数轴表示正负数。
(1)像我们刚才的游戏,例题中以大树为起点,向东为正,那么向西应记为什么?怎么走记为“0”?例题中四个小朋友运动后的情况分别记为什么?(生答师板书)
(2)明确了这点我们可以知道,当规定一个方向为正时,与之相反的方向则为负。这还可以扩展到一切3运动变化中,指定一个运动变化方向为正,那么另一个变化方向就为负。我们的生活中还有那些相反的变化运动呢?
(3)为了更加直观的看,我们在一条直线上来表示他们运动后的情况。这条直线表示他们要走的东西方向的路线,树的位置记为什么?
(4)假设直线打上箭头的方向为东,即为正方向。在直线上从起点开始分出相等的线段,用1cm表示实际的1m.
(5)大家观察一下这条直线,在0的左边,都是什么数?右边呢?像这样的直线就叫数轴。数轴有什么特征?它与直线有什么区别?
(6)它长得比较像什么啊?(出示温度计)大家看这个温度计,我们把它放平放,是不是在0的一边是零下,一边是零上?
(7)现在哪个同学能在这个数轴上表示出—1.5?
(8)根据例题的要求,往东为正,那么如果你从起点要运动到—1.5?
3.教学第6页例4,学习负数大小的比较。
(1)大家看课本上未来一周的天气情况,里面有没有负数?把它读出来。
(2)教师板书数轴,一边画一边讲解画数轴的方法,注意强调,要在直线上确定一点为0,然后再截取等分线段,要求学生在练习本上画数轴。
(3)让我们把每天最低气温在这个数轴上表示出来。
(4)从最低气温来看,周五和周四哪天更冷呢?你是怎么知道的?
(5)我国新疆地区冬季时温度达到—30℃,大概在温度计的那儿?在数轴上表示大约在哪个位置?
(6)正、和0负数之间的大小顺序是怎样的?
(7)我们刚才比较了—8℃和—6℃,知道—8℃更冷,说明哪个温度高呢?哪个数字更大一些呢?
(8)大家观察一下—8和—6在数轴上的点哪个离0近一些?在正方向上,我们知道2比1大,那哪个离0近一些?从数轴的左边到右边的数字有什么规律?从这个情况可以小结出什么呢?小结:在数轴上从左到右的顺序就是数从小到大的顺序,左边的数比右边的小。
(9)如果不用数轴,直接比较两个负数的大小,还可以怎么判断?
三、巩固练习
1.第7页的做一做的第一题。
2.第7页的做一做的第3题。
四.课堂小结
这节课我们学会了什么内容?比较负数的大小可以怎么比较呢?
教学反思
本课时的设计充满着轻松的氛围,以游戏导入,一开始就抓住学生的注意力。将例题用直观有趣味的方式体现,学生在快乐中掌握知识,这其实是新课标要求所提倡和极力达到的要求,能够很好地保护和激发学生的学习兴趣。此外,本课时的设计还有一大特点是在对知识点引起的环节上,注意由学生熟悉的情境引入,注重例题及知识点的教学衔接,避免生硬的知识点教学转化,设计好过渡和引导,使教学环节浑然一体,知识点的衔接也显得水到渠成。
第二单元 圆柱与圆锥
单元目标:
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、 使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、 使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
单元重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
单元难点:
圆柱、圆锥体积的计算公式的推导
1、圆柱 总第三课时
(1)圆柱的认识
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
认识负数课件 篇2
一、教材分析
在认真研读教材后,我改变了教科书原有的编排。教材是根据学生已有的生活经验,选用“气温”和“温度计”这两个熟悉的情境,让学生认识负数和理解负数。适时加入初一学习数轴初步知识,改变原有的编排,整合学习内容,“创造性的使用教材”,而不是“教教材”。为此,我制定出以下的教学目标。
二、说教学目标
1、知识与技能方面:了解正数与负数是实际需要的,掌握会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。
2、过程与方法方面:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。
3、情感与态度方面:
①、从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。
②、根据新课程标准新提出要注重培养学生基本的数学思想,我想通过正负数的教学,渗透对立、统一的辩证思想。
③、通过对负数有关知识的介绍,培养学生爱国主义情感。
三、说教学重点和难点。
本课的教学重点:理解运用正负数表示具有相反意义的量。
教学难点:理解0既不是正数也不是负数,并能对三者初步进行大小比较。
四、说教学环节以及设计意图
为了能很好地达到以上教学目标,我设计了四个教学环节,分别是:
1、巧设情境、感知引入——引出负数;
2、体验内化、探求新知——认识负数;
3、回归生活,拓展应用——应用负数;
4、课堂总结、知识延伸——拓展负数。下面,我就来具体阐述教学环节以及我的设计意图。
第一个环节:巧设情境、感知引入——引出负数
我们都知道:课堂应是点燃学生智慧的火把,而给予她火种的是一个个具有挑战性的问题。于是,我改变原有课本呈现三个城市的温度教学,一开始,让学生记录三条意义完全相反的信息:“老师说几件事,把你所听到的数据信息记录下来,独立思考,选择你喜欢的方法记录,关键是让别人一眼就能看明白。”这些数据信息是我精心准备的:比赛中进球丢球、学生的转进转出、生意的盈利亏损。创设这三个情境,其目的有两个:
一、这些情境都是学生比较熟悉的,比教材中的温度学习更有兴趣。
二、这些情境隐含了本节课的重点,用正负数来表示相反意义的量。我预设学生可能出现的答案,有的学生用文字,有的学生用箭头,当然也有学生就用正数、负数来表示。虽然他们的答案形式各样,但都有本质上的联系,我紧接又抛出一个评价性的问题:你们觉得谁的表示方法更简单易懂一些呢?于是动态生成里学习目标:认识负数,用正负数来表示意义相反的量。不惊让人觉得“负数”真是一场“及时雨”啊!这样的引入,学生自身产生“需要找到一种统一的形式”的内需,这时的学习,已经由被动化主动,同时,也让学生体验了由具体到抽象的符号化、数学化过程,认识也逐渐从模糊到清晰。这样的过程更让学生简约地经历了人类探索负数的历程,实现了数学学习的再创造。引出负数后,我直接描述性的介绍,像什么样的数叫正数、像什么样的数叫负数。俗话说得好:不要认为学生是一张白纸,是一无所知,教师该放手时就放手,该出手时就出手。当学生知道它们的概念后,就能很快的判断一个数是正数还是负数。接着,我通过“快速抢答并判断”的游戏来刺激学生的思维,既能活跃课堂气氛,又能不知不觉中让学生熟练的掌握知识。还可以通过:“你能写出几个正数和负数”的练习,让学生体会正数和负数无限、对应等数学思想。现在新课标也注重要加强学生的基本数学思想。我想在此,这些数学思想已经无形地渗透其中。介绍有关负数的小知识,让学生感受到我们的祖先是最早认识和使用负数的,这是多么的了不起啊!
第二个环节:体验内化、探求新知——认识负数
学习完了上一环节内容后,我让学生联系生活,想一想生活中的负数。顺利引入四个城市某日的天气预报,要求学生读出上述信息后,引导学生明白在生活中用温度计来测量温度,初步明确零上温度和零下温度的不同表示方法。在介绍完温度计的基本知识后,指名让学生动手拨出5℃和北京-5℃,也就是零下4℃。学生在没有0℃的温度计上,轻易的拨出了5℃,接着我又让她再-5℃,生在“水银”无法往下拨时,发现应该先确定0℃。加深他们对分界点0的认识。不要小看学生拨一拨这个环节,我们教材是直接呈现城市的温度,让学生自己读出来。而创造性地改变教材,其目的有两层意思:
一、由静态化为动态,通过小小的“拨”,唤起了更深层次的思考:要在温度计上表示温度,首先要确定0℃的位置。使学生明确感悟到:温度中,0℃是区分零上温度和零下温度的分界点,比0℃高的温度用正数表示,比0℃低则用负数表示。其
二、学生动手操作,兴趣盎然,既将正数、负数、零有机地整合到了一个新的概念框架中,实现了对0的再认识,又突出了本节课的教学重点、突破了0既不是正数也不是负数的难点。
在学生理性认识了零上温度和零下温度后,我再出示中国最冷的城市:黑龙江负0℃,用自己的表情和动作来表示越来越冷的感受。这不仅将负数大小的比较等知识很好地渗透进来,而且又能体现在生活中学数学的理念。
第三个环节:回归生活,拓展应用——应用负数。
既然负数是生活中发现的,那么我们就应该“取之于生活,用之于生活”。在练习环节,我为学生提供了大量的生活中的信息,运用数学知识解决生活中自己身边的问题,使练习变的既有趣又有用。我设计了三种练习:
1、基础性练习:山峰的海拔高度和盆地让学生再次感受“负数真的是无处不在”啊!多样化的练习,既不枯燥,又检查了学生对负数的理解。
2、形成性练习。比如上课时教师和学生可以演示方位中的负数。教师向北走几步,学生应该向南走几步等,这些不仅针对教学重点“用正负数表示意义相反的量”,而且又紧密联系生活,学生好学、乐学。
3、拓展性练习。我借助“刘翔”这个不仅是小学生会关注,大人会关注,乃至全世界人都会关注的人物跨栏成绩的研究,一下子把学生的积极性提到最高处。当时风速是每秒-米,为BB么说要说-米呢?给予学生讨论的空间,并用肢体语言表示出来。然后借助两位同学的表演,相对而跑,揭示出负数是表示相反意义的数。再让学生想想如果风速是每秒+米呢,又会出现什么情况呢?这些有价值性的问题,我想,学生愿意去思考,在思考中学数学,学在其中,乐在其中。
第四个环节:课堂总结、知识延伸——拓展负数。
引入数轴评价本课的收获:学生有前面温度计的辅垫,学习数轴也觉得轻松很多。
这个环节主要让学生总结本节课的知识,我相信,由于教师为学生搭建一个交流、开放、宽松的“舞台”,学生就能熟练轻松地总结知识。为了提高学生对负数的知识的兴趣,提高:你还想了解哪些与负数有关的知识?这样不仅能给课堂画上圆满的句号,还激发了学生继续探究的热情!
五、课后反思
通过本节课的学习,学生在知识性目标方面能够很好地落实,同时学生对所学过的数也能初步地形成知识系统,对负数的知识也能产生浓厚的学习兴趣。情感性目标也应能落实得比较到位。
现代教学论认为:学生只有在亲身经历或体验一种学习过程时,其聪明才智才能得以发挥出来。任何学习都是一种积极主动的建构过程。有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
本节课的不足之处:老师在语言总结上,应该更为简洁;正数在日常生活中,正号省略不写,有个别学生还未掌握、
认识负数课件 篇3
认识负数
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1.练习一第2、3题
2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。
3.讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
第一课时教学反思
经过一学期“生本对话”课题研究,全班已基本形成课前自学的习惯。在此基础上,本学期提高了对预习的要求(不仅要完成课后“做一做”,而且要尝试提出有思考价值的数学问题),也想逐步改变教学方式,以学生的问题带动全课的教学推进。
今天,学生在例1环节只提出了教材中的一个问题“16℃和—16℃的意义相同吗”,并追问了“为什么”,再无其它疑问。对于“为什么”也回答得很清晰,看来生活积淀为负数的学习打好了坚实的基础。在此,我补充了认识温度计上的温度这一知识点。主要出于以下两点考虑:一是为第二课时数轴上表示正负数做准备;二是联系生活实际,提升学生的数学应用意识。我所绘制的温度计是以5℃为一个单位长度,在练习中发现部分学生读或指温度时有错误,主要是—16℃与—14℃易混淆。在此引导学生辨析,并教给他们方法。
在例2中学生质疑的问题明显增加。有(1)“正数、负数的意义是什么”;(2)“正数、负数的区别是什么”;(3)“为什么0既不是正数,也不是负数”;(4)“算式中的会有负数吗?如果有,它和减号如何区分?”其中前三个问题是本节课内容,后一个问题涉及到初中的代数知识。学生们答疑的水平较高。如第一问,回答问题的学生不是像教材那样用举例子的方式来描述正、负数的意义,而是用抽象概括的语言总结其含义。“大于0的数是正数,小于0的数是负数”,多棒呀,看来学生的能力不可小瞧!第三个问题是由我解释,从而帮助学生了解其原因。最后一个问题为帮助学生更好实现中小衔接,我也进行了补充介绍,提升他们的学习兴趣。
但学生的此次质疑还不够全面,主要表现在对读法较忽视。为此,我补充提问了“+”号可以省略吗?省略后怎样读?它还是正数吗?“—”号可以省略吗?为什么?怎样读?强调读法及正负数的表示方法。
最后,根据本班学情,我补充了下列练习,提升综合应用能力。下面记录的是3位学生的期末数学考试成绩。以他们的平均成绩为标准,把平均分记为0分,超过平均分记为正、不足的分数为负,在表格中用正、负数表示他们的分数。
认识负数课件 篇4
教学内容:
负数的初步认识,教科书第2~4页例1、例2,
教学目标:
1、知识目标 使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、能力目标 使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0
3、感目标 使学生体验数学和生活的'密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数
教具准备:
多媒体课件、温度计、练习纸、卡片等
教学过程:
一、承前启后
1、出示主题图。教材第2页主题图。
2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃ 和 2℃ 各代表什么意思?) 引出课题并板书:负数的初步认识
二、学习引领
1、教学例1 。
(1)教师板书关键数据:0℃ 。
(2)教师讲解0℃的意思: 0℃表示淡水开始结冰的温度。
比0℃低的温度叫零下温度,通常在数字前加-(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。
比0℃高的温度叫零上温度,在数字前加+(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。
(2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
2、学生讨论合作,交流反馈。
(1)请同学们把图上其它各地的温度都写出来,并读一读。
(2)教师展示学生不同的表示方法。
(2)小结:通过刚才的学习,我们用+和-就能准确地表示零上温度和零下温度。
3、教学例2。
(1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说支出(-)或(+)这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。
认识负数课件 篇5
1、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。
2、中国人对正负数的认识不但比欧洲人早,而且也比古印度人早。印度开始运用负数的年代比中国晚700多年,直到公元630年。印度古代著名的大数学家婆罗摩笈多才开始使用负数,他用小点或圆圈来表示负号。
3、元朝时期的朱世杰在《算学启蒙》一书中,第一次将“正负术”列入了全书的《总括》之中,这说明,那时的人们已经把正负数作为一个专门的数学研究科目。在这本书中,朱世杰还写出了正负数的乘法法则,这是人们对正负数研究迈出的新的一步。
4、我相信,一直遨游在美丽又神奇的数学海洋中,一定会有更多的收获!更多的朋友!
5、收入和支出等等。0既不是正数也不是负数。在数轴上表示出正负数,并学会比较大小,负数小于零小于正数。
6、小学是学负数的,你可以看看人教版六年级的教科书,现在的小学已经涉及到负数的学习了,要小学六年级就是会学到了.不过只是认识负数,负数在生活中的基本应用(比如-1℃),最多是简单的加减计算,并不会涉及到太复杂的计算.
7、数学中的复数加减法是在小学哪一年级学的?
8、我们湖北的温度是+8℃,可是哈,哈尔滨的气温却在-8℃左右。唉!
9、据考古学家考证,除《九章算术》外,中国古代的许多数学著作甚至历法都提到了负数和负数的运算法则。
10、负数也死要面子,和睦的俩兄弟,反目成仇。
11、我记得我那时候是到初一才学负数的加减法。不过小学六年级学过方程。如果一个数在等号的左边是加,移到右边就变成了减。
12、“0”竟然成了中间人,没有办法的“0”也只有相同对待他们兄弟俩了!“0”离负数多远,也离正数多远。最近啊!
13、中国古代劳动人民早在公元前2世纪就认识到了负数的存在。在《九章算术》的《方程》篇中,就提出了负数的概念,并写出了负数加减法的运算法则。
14、这“0”是我的老朋友了,平时,“0”总是被排除在外,可是有了正数与负数这形影不离的好朋友后,见到他俩总不和,正数脾气大,是个小气包。
15、小学六年级下册第一单元就是认识负数这个课程内容。
16、“从”、“除”和“消”分别改为了“加”与“减”,这更加明确了正负与加减的关系。
17、数学中的负数是在小学六年级认识的。人教版小学数学六年级下学期介绍了负数,但是并没有要求学生能够进行加减计算,仅仅是让学生了解复数。小学里面的很多数学知识虽然只需要了解,如果能够掌握对于学生来说是非常好的,所以建议深入的学习小学阶段的所有知识。
18、正数交上朋友,他们俩可常到我家来串门,我的生活中,可处处都有他们的身影。
19、中国古代著名的大数学家刘徽,在书中注释说,中国古代人民在筹算板上进行算术运算的时候,一般用黑筹表示负数,红筹表示正数。或者是以斜列来表示负数,正列表示正数。此外,还有一种表示正负数的方法是用平面的三角形表示正数,矩形表示负数。
20、生活中存在收入和支出……的问题便引入了负数的概念。如今年苹果大丰收挣了5万元,表示为正5万元,张三家管理上出问题了结果苹果只卖了8千元,连施肥,打药等的费用都不够,收入出现赤字(欠钱)引入负数,还欠18oo元记作一l8oo元。
21、据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则我国三国时期的学者刘徽在建立负数的概念上有重大贡献。
22、但在欧洲,人们认识负数的年代大约比中国晚了1000多年。负数在欧洲的第一次出现是在希腊数学家丢番图写的一本书中,他在解一个方程的时候,偶然运用到了负数,但不久以后,他的这个伟大发现就被欧洲人作为“荒谬的东西”废弃了
23、学呢!六年级就开始学习了。
24、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
25、这可让他们的好朋友“0”怎么办呀!
26、我今天认识了一位新朋友——负数。和负数一起,还有一位兄弟叫正数,正数与负数虽是兄弟,可是他们俩却总是水火难容,负数常常与正数唱反调,这不,在银行办理业务时,存入200元就是+200,而取出200元却是-200。还有在看天气预报时我又看见他们兄弟俩了。
27、至于这个问题。小学一年级到六年级的课本,我好像都看过。似乎没有学到过负数的加减法。
28、中国对负数的认识
29、你好,人教版6年级下册第一章介绍了负数,但是在初一第一章有理数中才学习运算。
认识负数课件 篇6
教学内容:
正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。
教学目的:
1、 教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。
2、 能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。
3、 了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的相反数。
4、 掌握绝对值的表示法,给一个数,会求它的绝对值。
教材分析:
本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。
教学课时:
约6课时。
教学准备:
小黑板、投影片。
1、 正数和负数
教学内容:完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。
教学目的:
1、 认识正数和负数,会用正数和负数表示一些常见的数量。
2、 培养学生对相对的理解,培养创新的思维品质。
教学重点:
负数的认识是本课的重点。
教学过程:
一创设情景:
师:我们已经学过哪些数?
出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?
二探究新知:
1师:你会读这些数字吗?试一试.
师:像-1、-4、-8……这样的数都是负数。
师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。
2自学课本第二页的内容。
师:你还能举出一些正、负数的例子吗?
3教学例题
出示例题,读题后说一说自己的想法。
明确:海平面以上用正数表示,海平面以下用负数表示。
4试一试
完成试一试的相关题目。
三巩固拓展
1完成练习一a组的1-7题。
第4题要重点订正。
2完成练习一b组的第1、2、3题。
四小结
师:本节课你有什么收获?
认识负数课件 篇7
第一课时:
认识负数(一)
教学内容:
苏教版五年级数学下册 第一单元 P1—3 练习一 1—5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
教学重点:
在现实情景中理解正负数及零的意义。
教学难点:
用正负数描述生活中的现象。
一、教学例1
1、情境引入。
电脑播放天气预报片头
师:老师收集了某天四个城市的最低温度资料,并用温度计显示。
2、教学用正负数和0表示几个城市某一天的最低气温。
出示图片:香港19摄氏度
师:那一天香港的最低气温是多少度?
师:你是怎么看出来的?
老师介绍温度计的看法。
出示图片:上海3摄氏度
师:上海的气温是多少摄氏度?
出示图片:南京0摄氏度
师:南京呢?和上海比,南京的气温怎样?
出示图片:北京零下3摄氏度
师:和上海比,北京的气温怎么样?
同时出示上海、南京、北京三地的气温图片。
师:上海和北京的气温一样吗?
师:在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?
3、介绍正负数的读写法。
师:规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。
教学正数和负数的读写法
师:“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。“-3”读作负三,书写时,只要先写“-”——负号,再写3。(教师板书)
师:现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃
4、练一练
(1)选择合适的数表示各地的气温
(2)小小气象记录员
二、感知生活中的正数和负数。
1、认识海拔高度的表示方法
师:从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。
出示教科书上的“你知道吗”
2、练一练
三、描述正数和负数的意义
出示:+3,-3,40,-12,-400,-155,+8848
师:你能将这些数分分类吗?按什么分?分成几类?小组讨论。
师:象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。
师:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。
师:0是正数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。
练一练
1、先读一读,再把数填入适当的框内。
-5,+26,9,-40,-120,+203
正数 负数
2、每人写出5个正数和5个负数。
读出所写的数,并判断写的是否正确。
3、出示“你知道吗?——中国是最早使用负数的国家”
小结:今天这节课,你有哪些收获?
四、寻找生活中的正数和负数。
师:在生活中,在哪里见到过负数?
学生说出存折,电梯面板等等,并要求说明这些负数的意思
练习一 4
选择合适的温度连一连
冰箱中的鱼 水中的鱼 烧好的鱼
认识负数课件 篇8
【教学过程】
课前谈话:
同学们,在我们生活中,存在着很多意义相反的现象,比如说……你能举出一些这样的现象吗?
一、用正号和负号记录相反意义的量
1.师:像这样相反的现象,在我们学校也是随处可见的,比如说:(出示班级人数变化表)你们班本学期的人数和上学期相比,发生了什么变化?其他班呢?指名说说。
有的班的人数……了,有的班的人数……了,人数增加和减少是一组表示相反意义的量,你觉得老师这样记录能把他们区分开来吗?那你有更好的方法进行记录吗?用你自己喜欢的方法记录。
学生填表。
指名展示台上反馈,说说自己的想法。
师:你觉得哪一种是最具有数学味的?这样记录有什么好处?
是的,数学家们也喜欢采用这种既简洁又方便的方法来表示这样具有相反意义的量。而加号和减号在这里应该读作正号和负号,现在你会读这些数吗?谁来试一试?师带大家读。那我们就一起用正号和负号重新记录一下好吗?
2.师:现在你会用正号和负号来记录其他表示相反意义的量吗?(出示)
一辆公共汽车经过某站台时有12人上车,7人下车。
张阿姨二月份存入2900元,三月份取出1200元。
一个蓄水池夏季水位上升0.05米,冬季水位下降0.04米。可以怎么记录?
二、教学例题
1.师:老师收集了几个城市同一天的最低气温,我们一起来看一看:(出示城市图片和温度计)
放大温度计:这是什么?你会看温度计吗?怎么看?谁能来给我们介绍一下?(师借机说明℃和?SPAN>F)
红色液柱显示:上海零上4℃南京0℃北京零下4℃
师:上海的气温是多少?南京呢?北京呢?那我们可以怎么记录这三个城市的气温呢?(板书)+4℃也可以省略正号写成4℃,(师板书)那么负号可以省略吗?为什么?
2.师:还有三个城市的气温,你也来试着记录一下好吗?
出示:香港19℃哈尔滨-11℃西宁-7℃
学生记录,展示台上反馈。
3.这一天南极的温度是—40℃,赤道的温度是40℃。
如果把我们的温度计分别拿到南极和赤道,会有什么反应呢?你能在温度计上画一画吗?
展示台上反馈。
4.出示例2:比海平面高8844米 ,通常称为海拔高度8844米,我们可以怎么记录?比海平面低155米呢?
师:我国最大的咸水湖——青海湖高于海平面3193米,可以怎么记录?世界最低最咸的湖——死海低于海平面400米呢?
某地的海拔高度是0米,你是怎么理解的?
5.练习一2
三、分类归纳
师总结:你们觉得这些数面熟吗?像……这样的数我们就叫它……(正数)是的,正数其实都是我们以前学过的数,那么这样的数呢?(都是负数),而负数是我们这节课刚认识的。(板书课题:认识负数)0呢?是什么数?师画出数轴。
负数是不是就只有这么几个呢?你能不能再举几个例子?说得完吗?那我们应该加上什么?(……)正数呢?
你在生活中有没有见到过负数?(浏览)
四、巩固练习
1.P3练一练1
2.练习一5(增加:我国成功发射的飞船在太空中向阳面的温度为100℃以上,而背阳面却低于-100℃,但通过隔热和控制,太空舱内的温度始终保持在17-25℃,非常适宜宇航员工作。)
读了这些数,你有什么感受?
3.练习一4
4.实验中学对初三男生进行了引体向上的测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示:
5.某食品厂生产的120g袋装方便面外包装上印有“(120±5)g”的字样,小明购买一袋这样的方便面,称一下发现只有117g,请问厂家有没有欺骗行为?为什么? 你知道他们分别做了几个引体向上吗?
认识负数课件 篇9
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
在现实情境中理解正负数及零的意义。
一、谈话导入:
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
这节课学生在课堂上的反应是热烈的,但在作业中,发现似是而非的错误较多。特别是在温度计上找零下几度,不是正好的刻度时,容易找错区间,需要加强指导。
认识负数课件 篇10
地位和作用:
负数的相关知识,是过去小学数学老教材里没有的内容。
新教材增选负数的知识
有两个目的:
一、负数在日常生活中的应用比较多,学生在生活中经常看到负数,甚至使用负数。
二、适量知道一些负数的知识,扩展对整数的认识范围,能更好地理解自然数的意义,为进入初中的学习作了基本的铺垫。
这部分内容是在学生系统地认识自然数、小数和分数的基础上进行教学的。通过负数的认识,使学生明白“数”不仅包括正的,还有负的,从而使学生对数的概念形成一个完善、系统的知识结构,为今后进一步学习有理数意义的运算打下基础。
教学内容:
小学阶段只要求学生初步认识负数,能在具体的情境中理解负数,初步建立负数的概念,会描述、辨认正负数,不出现负数数学定义。有关数轴的认识,只是让学生能在数轴上表示出正数、0和负数所对应的点。关于数的大小比较,只要能借助数轴来比较就可以。
基于以上分析,确定教学目标如下:
1、结合熟悉的生活情境,理解负数、正数、零的意义及三者间的大小关系,并会正确的认、读、写。
2、借助熟悉的现实情境,使学生经历数学化、符号化的过程,体会负数产生的必要性与合理性;学会用正负数描述现实生活中具有相反方向的量;
3、初步认识数轴,在数轴上感受数序,渗透“数形结合”的数学思想。
教学重点和难点
教学重点:理解运用正负数表示具有相反意义的量。
教学难点:理解0既不是正数也不是负数,并能对三者初步进行大小比较。
易错点:
1、认读温度计和比较零下温度的高低。首先,借助多媒体课件“化静为动”的优势,学生清楚地看到了温度计上酒精柱的变化过程,再通过引导学生观察酒精柱所处的高低位置,引发了学生对温度进行比较的思考,也为接下来的两个零下温度的比较奠定了必要的知识基础。
最后概括出:两个零下温度的比较,负号后面的数越大,温度反而越低。
2、认识数轴也是易错点。利用温度计教具的优势,将温度计横着放,告诉学生这就像一条数轴,中间是0,让学生说出负数在0的哪边,正数在0的哪边。这样,学生能形象的通过温度计教具,深刻地理解正数、0、负数三者之间的关系。
认识负数课件 篇11
教学内容:义教课标(苏教版)数学五年级(上册)第1—3页的例1、例2及“试一试”、“练一练”,完成练习一第1—6题。
[教学目标:
知识与技能:1、使学生在熟悉的生活情境中了解负数产生的背景,初步认识负数,掌握正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。
2、学生会用正、负数描述现实生活中的一些简单的具有相反方向的量。
3、让学生经历数学化的过程,享受创造性学习的乐趣。
过程与方法:使学生在大量的现实情境中,体会负数产生的必要性。
情感、态度和价值观:使学生初步体验数学与日常生活的密切联系,进一步激发学生学习数学的兴趣,同时结合史料对学生进行爱国主义思想教育。
重点难点]1、在现实情境中初步认识负数的意义及了解负数的产生与应用。
2、能用正、负数描述生活中的现象。
教学准备:多媒体课件
教学过程]
一、初步认识 教学读写方法
1.游戏引入。
师:剪子包袱锤玩过吗?那我们也来玩一玩,不过是有规则的。
课件出示:同桌的2个同学玩4次,把自己的输赢的结果记在心里。
生玩游戏,教师和其中一生一起玩。
师:请几个同学来说一说输赢情况。
生1:我赢3次,输1次。
生2:我赢4次。
生3:我赢1次,输3次。
生4:我赢2次,输2次。
[评析]本节课从“剪子包袱锤”的游戏入手,通过游戏让学生感受到相反的意思,为学好负数的意义做好铺垫。
2.初识负数。
师:如果赢2次记作2,那么输2次该怎么记呢?
生1:就在2前面写一个输。
生2:在2前面画一个“×”。
生3:在2前面画一个哭脸。
生4:在2前面加一个“—”。
……
师:同学们真爱动脑筋,想出了这么多记录的方法,在这几种方法中哪一种方式既简便,又有数学的特点呢?
生:用“—”表示。
师:你的想法和科学家一样。在生活中除了赢和输是相反意义,还有哪些是意思相反的呢?
生1:收入和支出。
生2:转进和转走。
……
师:现在咱们也来用这种方法,记录下面两句话,指名两个同学到黑板前来写。
课件出示:(1)爸爸这个月收入为1500元,可以记作1500,支出水电费200元,可以记作( )。(2)粮店运进大米60吨,记作60,运出12吨,记作( )。
3.读负数。
师指着黑板的两组数据:2、1500、60和-2、-200、-12这两组数有什么不同?
生:2、1500、60这三个数是我们以前学过的数。
生:-2、-200、-12这三个数前面都有一个减号。
师:“-”在这里可不是减号了,叫负号,那我们把-2、-200、-12就叫做负数。这个-2就读作“负二”。
生读剩下的两个负数。
师:像2、1500、60就是正数,负数前面有一个“-”,那么正数前面也有个“+”,叫正号。人们为了简便,正数前面的“+”可以省略不写,这个+2就读作“正二”。
生读后面的两个正数。
师:正数前面的正号能省略,负数前面的负号也能省略吗?为什么?
生:不能省略负数前面的负号,负号去掉就没有办法与正数区分啦。
4.写负数。
师:我们已经认识了正、负数,并且会读正、负数了,那你们能写几个正、负数吗?
指名两生到黑板上各写5个正、负数,其他同学在本子上写。
师:请几个同学将自己写的正、负数读给大家听一下。
师:如果时间允许的话,你还能写多少个正、负数。
生:无数个。
师:那也就是说正数和负数都有无数个。(师在黑板上在写正、负数的后面加……并画上集合图)
[评析]利用学生随意写的5个正数和5个负数,引导学生思考,如果有足够的时间让其继续写下去会怎么样?让学生感受到正数、负数都有无数个。
5.练习。
先读一读,再把这些数填入相应的圈内。
-5 +26 8 -40 -120 +103
二、介绍负数的产生史(略)
三、感知生活中的正数和负数
1.学生列举生活中的负数。
师:生活中你在哪些地方见过负数?
生1:天气预报。
生2:妈妈的工资条上。
生3:我们的一日常规记录。
……
2.出示天气预报图。
师:老师这儿带来了几个城市某一时刻的天气预报图。(课件一边出示天气预报图,边配音播报天气情况。)
生:图中北京的最高气温是4℃,最低是-4℃。
介绍温度计
师:老师给大家带来了一个温度计(课件出示温度计),我们一起来认识一下。温度计上有两个刻度,左边是摄氏度,右边是华氏度,我们国家常用的是摄氏度。0度是作为零上与零下温度的分界点。我们看温度计的时候只要看哪边的刻度就可以了?
生(齐答):左边。
师:现在温度计显示的是多少度呢?(课件分别出示10℃)
生:10℃
师:谁能来指一下-10℃在温度计的哪儿?
师:10℃和-10℃,两个温度哪个更冷一些?
生:-10℃冷。
师:用动作和表情把冷的感觉表示出来。
生做寒冷状,并念叨着好冷啊。
3.0与正数、负数的大小。
师:零是零上温度与零下温度的分界点。那么这个“0”与正数、负数的大小有什么关系呢?
生:负数
[评析]当数学教学找到了与生活的连接点,把数学现象规律用生活实际问题的解决来表现时,数学知识的学习就变得“通俗易懂”了。在教学中从认识温度计,引导学生认识温度计上的0刻度,及0上和0下的温度。将原有的生活经验数学化,使学生进一步体验到正数与负数之间的区别与联系。
四、负数的应用
师:看来大家学得都不错,那就让我们用所学的知识一起去解决生活中的问题。
1.填一填。
a.小华从0点向东行5米,表示为+5,那么从0点向西行3米,表示为( )米。
b.如果小华的位置是+4米说明他是向东行4米,那么小华的位置如果在-5米处,说明他是向( )行( )米。
2.出示电梯按钮,问上五楼和地下二楼应按哪两个键?
3.连一连(练习一第4题)
4.看图写一写、再读一读。(练一练第2题)
五、探究升华
1.认识海拔高度的表示方法。
师:新疆吐鲁番盆地是我国海拔最低的地区,你知道它的海拔高度是多少?(出示海拔高度图)
师:以海平面为标准,珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。
师:你能用今天学的知识表示这两个地方的海拔高度吗?
学生尝试表达。
小结:以海平面为基准,比海平面高8844米,可以记作:+8844米;比海平面低155米,可以记作:-155米。用正负数还可以区分海平面以上的高度和海平面以下的高度。
2.练一练。
(1)用正数或者负数表示下面各地的海拔高度。 (出示海拔高度图)
中国最大的咸水湖——青海湖的海拔高度高于海平面3193米。
世界最低最咸的湖——死海低于海平面400米。
世界海拔高度最低的国家——马尔代夫比海平面高1米。
(2)说说下面的海拔高度是高于海平面还是低于海平面?
里海是世界上最大的湖,水面的海拔高度是-28米。
太平洋的马里亚纳海沟是世界上最深的海沟,最深处海拔-11034米
六、本课小结
[设计理念]
我是利用学生已有的知识经验来认识正数和负数,了解正数和负数的意义。我充分挖掘习题功能,在展示学生个性化表达的同时,丰富学生对负数的认识。进一步体验数学与日常生活的密切联系,激发学生学习数学的兴趣。
[设计思路]
我首先进行课前游戏,通过生活中有许多相反的事例引出新数。其次教学时我将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。零度以上、海平面以上为正数,反之,则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。最后通过挖掘习题,在展示学生个性化表达的同时,丰富学生对负数的认识,体会正数和负数的意义,沟通新旧知识的内在联系。
心得体会:
通过这段时间来的培训,感觉自己还是受益很多,一堂课的设计,根据教师理念,知识面、教学经验的累积等因素的差异,情景的设置与教学过程也会大相径庭。以往我们设计的认识负数,完全利用教材做最原始的依据,这也是多数教师惯用的伎俩,但有些时候我们可以添设一些与学生较为密切的活动作为教学的出发点,把数学的知识运用其中,这样一来,学生的兴趣有了,更重要的是,他们更加容易接受。
我们研习了很多精彩的课例,专家们也作了精辟的论述,这是我们必然会遇见的情况,从另一侧面来说,专家们是在指导我们怎样去应对这些在教学过程中出现的问题,这一点真的大有学习参考的必要。我也从这些精选的课例分析中学到了很多的东西。但是距离真正掌握这种技能还相差很远,还需要在教学过程中区体会与琢磨。
然而,教学永远是一门遗憾的艺术,我们可以最到更好,应该是一直朝着更好的方向努力!