back_img
好工具 >范文 >实用文

高中数学教案范文大全

2024-09-27 14:41:58

【#实用文# #高中数学教案范文大全#】作为一名优秀的教师,精心设计教学计划至关重要,包括教学目标、重点难点、教学方法、步骤和时间分配等环节。教学设计要怎么写呢?以下是好工具范文网小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。

高中数学教案范文大全 篇1

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .

根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的`票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

作业参考答案

2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

探究活动

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

甲拿乙制作的贺卡时,则贺卡有3种分配方法.

甲拿丙制作的贺卡时,则贺卡有3种分配方法.

甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

高中数学教案范文大全 篇2

一、向量的概念

1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

2、叫做单位向量

3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

4、且的向量叫做相等向量

5、叫做相反向量

二、向量的表示方法:

几何表示法、字母表示法、坐标表示法

三、向量的加减法及其坐标运算

四、实数与向量的乘积

定义:实数 λ 与向量 的积是一个向量,记作λ

五、平面向量基本定理

如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

六、向量共线/平行的充要条件

七、非零向量垂直的充要条件

八、线段的定比分点

设是上的 两点,p是上xx的任意一点,则存在实数,使xxx,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点

定比分点坐标公式及向量式

九、平面向量的数量积

(1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

(3)平面向量的数量积的坐标表示

十、平移

典例解读

1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

其中,正确命题的序号是xx

2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=xxxx

3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为xx

4、下列算式中不正确的是( )

(a) ab+bc+ca=0 (b) ab-ac=bc

(c) 0·ab=0 (d)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

?函数y=x2的图象按向量a=(2,1)平移后得到的'图象的函数表达式为( )

(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

(c)2x-y=0 (d)x+2y-5=0

8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=xx

9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长

10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

(a)-5 (b)5 (c)7 (d)-1

11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

(c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0

12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

(a)2 (b)0 (c)1 (d)2

16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值

18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量

高中数学教案范文大全 篇3

前言

为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的`“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教案范文大全 篇4

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的'选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.

(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

提问2:能用自己的语言描述一下这几个对应的共性吗?

经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高中数学教案范文大全 篇5

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中数学教案范文大全 篇6

教材分析:

三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

教案背景:

通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

教学方法:

以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

教学目标:

借助单位圆探究诱导公式。

能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

教学重点:

诱导公式(三)的推导及应用。

教学难点:

诱导公式的应用。

教学手段:

多媒体。

教学情景设计:

一.复习回顾:

1. 诱导公式(一)(二)。

2. 角 (终边在一条直线上)

3. 思考:下列一组角有什么特征?( )能否用式子来表示?

二.新课:

已知 由

可知

而 (课件演示,学生发现)

所以

于是可得: (三)

设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角 角 相等。即:

公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

设计意图:结合学过的公式(一)(二),发现特点,总结公式。

1. 练习

(1)

设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

三.例题

例3:求下列各三角函数值:

(1)

(2)

(3)

(4)

例4:化简

设计意图:利用公式解决问题。

练习:

(1)

(2) (学生板演,师生点评)

设计意图:观察公式特点,选择公式解决问题。

四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

五.课后作业:课后练习A、B组

六.课后反思与交流

很荣幸大家来听我的课,通过这课,我学习到如下的东西:

1.要认真的研读新课标,对教学的目标,重难点把握要到位

2.注意板书设计,注重细节的东西,语速需要改正

3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

5.上课的生动化,形象化需要加强

听课者评价:

1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

3.评议者:平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

4.评议者:引导学生通过网络进行探究。

建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

( 6)让学生多探究,课堂会更热闹

( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

( 8)教学模式相对简单重复

( 9)思路较为清晰,规范化的推理

高中数学教案范文大全 篇7

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

高中数学教案范文大全 篇8

教学目标:

1.掌握基本事件的概念;

2.正确理解古典概型的两大特点:有限性、等可能性;

3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

教学重点:

掌握古典概型这一模型.

教学难点:

如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

教学方法:

问题教学、合作学习、讲解法、多媒体辅助教学.

教学过程:

一、问题情境

1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

二、学生活动

1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

这6种情况的可能性都相等;

三、建构数学

1.介绍基本事件的概念,等可能基本事件的'概念;

2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

3.得出随机事件发生的概率公式:

四、数学运用

1.例题.

例1

有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

例2

一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

一次摸出2只球,则摸到的两只球都是白球的概率是多少?

问题:在运用古典概型计算事件的概率时应当注意什么?

①判断概率模型是否为古典概型

②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

教师示范并总结用古典概型计算随机事件的概率的步骤

例3

同时抛两颗骰子,观察向上的点数,问:

(1)共有多少个不同的可能结果?

(2)点数之和是6的可能结果有多少种?

(3)点数之和是6的概率是多少?

问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

问题:点数之和是3的倍数的可能结果有多少种?

(介绍图表法)

例4

甲、乙两人作出拳游戏(锤子、剪刀、布),求:

(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

2.练习.

(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

(3)第103页练习1,2.

(4)从1,2,3,…,9这9个数字中任取2个数字,

①2个数字都是奇数的概率为_________;

②2个数字之和为偶数的概率为_________.

五、要点归纳与方法小结

本节课学习了以下内容:

1.基本事件,古典概型的概念和特点;

2.古典概型概率计算公式以及注意事项;

3.求基本事件总数常用的方法:列举法、图表法.

推荐阅读

上一篇:圣诞节有创意的活动主题名 下一篇:检讨书模板格式工作
back_img
推荐标签