back_img
好工具 >范文 >实用文

高中数学教案

2023-11-21 10:30:54 高中数学教案

【#实用文# #高中数学教案#】期望这篇“高中数学教案”能够完美地满足你的需求。教师在开学前需要准备好教案和课件,每个人都要规划自己的教案和课件。教案是实现教育现代化的必要工具。如果你能从本文中得到一些收获,我会倍感欣慰!

高中数学教案 篇1

教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方

面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所

反映的数学思想,在越来越广泛的领域种得到应用。

课 型:新授课

教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体

问题,感受集合语言的意义和作用;

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:

一、 引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

二、 新课教学

(一)集合的有关概念

1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这

些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简

称集。

3. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样

4. 元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)

5. 常用数集及其记法

非负整数集(或自然数集),记作N

正整数集,记作N_或N+;

整数集,记作Z

有理数集,记作Q

实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

强调:描述法表示集合应注意集合的代表元素

{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

三、 归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系

教材分析:类比实数的大小关系引入集合的包含与相等关系

了解空集的含义

课 型:新授课

教学目的:(1)了解集合之间的包含、相等关系的含义;

(2)理解子集、真子集的概念;

(3)能利用Venn图表达集合间的关系;

(4)了解与空集的含义。

教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;

教学过程:

四、 引入课题

1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2

;(3)-1.5 R

2、 类比实数的大小关系,如5

布课题)

五、 新课教学

a={1,2,3},B={1,2,3,4}

集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;

如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。

记作:A?B(或B?A)

读作:A包含于(is contained in)B,或B包含(contains)A (一) 集合与集合之间的“包含”关系;

当集合A不包含于集合B时,记作

B

用Venn图表示两个集合间的“包含”关系 A?B(或B?A)

(二) 集合与集合之间的 “相等”关系;

a?B且B?A,则A=B中的元素是一样的,因此A=B

?A?B即 A=B?? B?A?

结论:

任何一个集合是它本身的子集

(三) 真子集的概念

若集合A?B,存在元素x∈B且x?A,则称集合A是集合B的真子集(proper subset)。

记作:A B(或B A)

读作:A真包含于B(或B真包含A)

(四) 空集的概念

(实例引入空集概念)

不含有任何元素的集合称为空集(empty set),记作:? 规定: 空集是任何集合的子集,是任何非空集合的真子集。

(五) 结论:1A?A ○2A?B,且B?C,则A?C ○

(六) 例题

(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>2},B={x|x≥5},并表示A、B的关系;

(七) 归纳小结,强化思想

两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;

1 已知集合A={x|a取值范围。

2 设集合A={○四边形},B={平行四边形},C={矩形},

D={正方形},试用Venn图表示它们之间的关系。

课题:§1.3集合的基本运算

教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课 型:新授课

教学重点:集合的交集与并集、补集的概念;

教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

教学过程:

六、 引入课题

我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

思考(P9思考题),引入并集概念。

七、 新课教学

1. 并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B

Venn图表示: 读作:“A并B” 即: A∪B={x|x∈A,或x∈B}

高中数学教案 篇2

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

内容分析:

集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

教学过程:

一、复习引入:

1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2、教材中的章头引言;

3、集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N_或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N_或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数 (不确定)

(2)好心的人 (不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

4、由实数x,-x,|x|, 所组成的集合,最多含( A )

(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

(1) 当x∈N时, x∈G;

(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0_ = a+b ∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =且 不一定都是整数,

∴ = 不一定属于集合G

四、小结:本节课学习了以下内容:

1、集合的有关概念:(集合、元素、属于、不属于)

2、集合元素的性质:确定性,互异性,无序性

3、常用数集的定义及记法

高中数学教案教学2022最新 篇2

一、教学目标

【知识与技能】

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】

通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点

【重点】

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】

二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程

(一)复习旧知,引出课题

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案9

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.高中数学教案格式

一.课题(说明本课名称)

二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

三.课型(说明属新授课,还是复习课)

四.课时(说明属第几课时)

五.教学重点(说明本课所必须解决的关键性问题)

六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

七.教学方法要根据学生实际,注重引导自学,注重启发思维

八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

九.作业处理(说明如何布置书面或口头作业)

十.板书设计(说明上课时准备写在黑板上的内容)

十一.教具(或称教具准备,说明辅助教学手段使用的工具)

十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

高中数学教案教学2022最新 篇3

【教学目标】

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;

②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

【设计思路】

1、教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2、学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一、创设情境,引入新课

1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二、观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

三、举一反三,巩固定义

1、判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四、利用定义,导出通项

1、已知等差数列:8,5,2,…,求第200项?

2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五、应用通项,解决问题

1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3、求等差数列3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六、反馈练习:教材13页练习1

七、归纳总结:

1、一个定义:

等差数列的定义及定义表达式

2、一个公式:

等差数列的通项公式

3、二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高中数学教案教学2022最新 篇4

一、教学目标

【知识与技能】

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】

通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点

【重点】

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】

二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程

(一)复习旧知,引出课题

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案教学2022最新 篇5

一、教学目标

【知识与技能】

掌握三角函数的单调性以及三角函数值的取值范围。

【过程与方法】

经历三角函数的单调性的探索过程,提升逻辑推理能力。

【情感态度价值观】

在猜想计算的过程中,提高学习数学的兴趣。

二、教学重难点

【教学重点】

三角函数的单调性以及三角函数值的取值范围。

【教学难点】

探究三角函数的单调性以及三角函数值的取值范围过程。

三、教学过程

(一)引入新课

提出问题:如何研究三角函数的单调性

(二)小结作业

提问:今天学习了什么?

引导学生回顾:基本不等式以及推导证明过程。

课后作业:

思考如何用三角函数单调性比较三角函数值的大小。

高中数学教案 篇3

教材分析

圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

教学目标

1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

教学重点难点

以及措施

教学重点:圆的标准方程理解及运用

教学难点:根据不同条件,利用待定系数求圆的标准方程。

根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

学习者分析

高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

教法设计

问题情境引入法 启发式教学法 讲授法

学法指导

自主学习法 讨论交流法 练习巩固法

教学准备

ppt课件 导学案

高中数学教案 篇4

教师资格证高中数学教案模板向量

资料仅供参考

1本节内容在全书及各章节的状态:

p>

“向量”出现在高中数学第 1 卷(第 2 部分)第 5 章第 1 节。本节内容是传统意义上“平面解析几何”的基础部分,因此在“数学”学科中占有极其重要的地位。

2 数学思维方法分析:

(1)从“向量可以用有向线段表示”所体现的“数”和“形”的变换,可以看“数学”本身的“量化”和“物化”。

(2)从构造手段的角度,在教材提供的材料中,我们可以看到“数与形相结合”的思想。

二、教学目标

根据上述教材结构和内容分析,考虑到学生现有认知结构的心理特点,制定如下教学目标:

1 基础知识目标:掌握“向量”的概念及其表示,并能用它们解决相关问题。

信息仅供参考

2能力培养目标:逐步培养学生观察、分析、综合、类比的能力,准确阐述自己的想法和观点,重点突出关于培养学生的理解认知和元认知能力。

3 创新品质的目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合意识; “向量”的教学旨在培养学生的“知识重组”和“数字形成”意识。

4 人格品质目标:培养学生勇于探索、善于发现、独立意识、不断超越自我的创新品质。

三、教学重点、难点、重点

重点:向量概念的引入。

难点:“数”与“形”的完美结合.

重点:本课着重通过“数与形的结合”培养和发展学生的认知能力和灵活性。

4.教材处理

4.教材处理

strong>

资料仅供参考

建构主义学习理论认为建构是认知结构的形成,其过程一般是先将知识点按逻辑顺序串成知识线线索和内部联系,然后由几条知识线形成一个知识平面,最后形成一个综合体知识面根据其内容、性质、功能、因果等。为什么在本课中提出“数形组合”?应该说,这种处理方法是基于这一理论的体现。其次,本课的过程力求解决以下问题:知识是如何产生的?它是如何发展的?如何从实际问题抽象到数学问题,并赋予抽象的数学符号和表达方式,如何体现生活中客观事物之间的简单和谐关系。

V.教学模式

教学过程是一个非常复杂和动态的教师活动和学生活动的整体。集体意识的过程。教为导,学为主体,互为客体。启动学生自主学习,启发和引导学生实践数学思维的过程,获取知识,发现规律,理解原理,积极发展思维和能力。

六。学习方法

1.让学生在认知过程中专注于掌握元认知过程。

2.让学生将独立思考与多方沟通结合起来。

信息仅供参考

7.教学程序和假设

(1)设置问题,创建场景。

1.提问:在我们的日常生活中,我们不仅会遇到大小不一的数量,还经常会接触到带有方向的数量。这些量应该如何表达呢?

2. (在学生讨论的基础上,教师指导) 回忆“力的图形”后,分析力的作用点的大小、方向、作用点 重点分析力的作用点对运动的相对和绝对影响.

设计意图:

1.将教材内容转化为具有潜在意义的问题,让学生对问题有强烈的意识,学生的整个学习过程就会变成“猜”、“吃”、“糊”、“烦恼”、“忐忑”、“期待”。寻找理由和论据的过程。

2.我们知道,学习总是与一定的知识背景或情境有关。 在实际情境中学习使学生能够利用他们现有的知识和经验来吸收和索引他们当前正在学习的新知识。由此获得的知识不仅易于维护,而且易于转移到不熟悉的问题情境中。

(2)提供真实的背景材料,形成假设。

信息仅供参考

1.船以 /s 的速度航行。众所周知,一条河流长 m,宽 150m。船到对岸需要多长时间?

2.到达彼岸?这句话的实质含义是什么? (学生讨论并期望回答:参考文献未知。)

3.如何将实际问题抽象为数学问题? (同学们交流讨论,期待回答:要确定一个量,有时除了知道它的大小,还要知道它的方向。)

设计意图:

1.教师站在学生智力发展略超前(即思维最近发展)的边界,通过问题引导问题,促进学生“数形结合”思维的形成。

2.学生交流讨论后,将实际问题抽象为数学问题,并给出抽象的数学符号和表示。

(3)引导探索,寻找解决方案。

1.如何补充以上问题?从我们学到的知识中,我们必须增加“方向”的要求。

信息仅供参考

2.导向的本质是什么?也就是说,位移的本质是什么?预期答案:大小和方向的统一。

3.零向量、单位向量、平行向量、等向量、共线向量等序列化概念有什么关系? (重点明确。)

设计意图:

在老师的指导下,在积累现有探索经验的基础上,学生们讨论交流,评价每一个其他,共同完成了“数形结合”的心理建设。

2.本题旨在让学生不只“只看书”,敢于并善于质疑、批评和超越书本和老师。这是一种创新素质的突出表现,它使学生不满足于现状,执着追求。

3.尽可能揭示认知思维方法的全貌,让学生从整体上把握解决问题的方法。

(4)总结结论,加强理解。

经过指导,同学们总结出“数与形结合”的思路——“数”和“形”是同一个问题的两个方面。 “数”的性质。

信息仅供参考

设计意图:促进学生数学思维方法的形成,引导学生掌握“数与形相结合”的思维方法.

(5)变体扩展与重构。

教师指导:这里我们已经知道,如果我们要解决一些抽象的数学问题,可以借助图形来解决,这是向量的理论基础。

下面我们继续学习一些与向量相关的概念,并引导学生使用模型演示进行观察。

概念一:长度为0的向量称为零向量。

概念2:长度等于单位长度的向量称为单位向量。

概念3:具有相同或相反方向的非零向量称为平行(或共线)向量。 (规定:零向量与任意向量平行。)

概念4:长度相同、方向相同的向量称为等向量。

设计意图:

材料仅供参考

1.学生在教师的指导下,在积累已有探索经验的基础上进行研究。讨论交流,互相评价,共同完成有向线段与向量关系的构建。

2.通过这些概念的比较,可以使学生加强对“矢量”概念的理解,从而更好地“结合数字和形状”。

3。让学生对教学思想方法及其对应的情境有更熟练的认识,并将这种认识和思维储存在大脑中,随时提取应用。

(6)总结反馈调整。

1.知识内容:

比如设O为正六边形A B C D E F的中心,分别写出图形和向量O A ,O B、O C 是相等的向量。

2.运用数学思维方法培养创新素质总结:

善于发现现实生活中的问题,从而提炼出相应的解数学题。发现,作为一种意识,可以解释为“探索问题的意识”;作为一种能力,发现可以解释为“发现新事物”的能力,是培养创造力的基本途径。

信息仅供参考

b.解决问题采用了“数与形相结合”的数学思想,体现了数学思维方法是解决问题的根本途径。

C.探索问题变体的过程是创新思维活动过程中的多维整合过程。知识重组的过程是一个多维度的整合过程,是一个高层次的知识综合过程,是对课本知识在更高层次上的概括和总结,有利于形成一种开放的、动态的、具有较强自学能力的知识。再生。系统,使思维具有整体功能和创新能力。

2.设计意图:

1.对知识内容的总结可以使课堂教学所传授的知识尽快转化为学生的知识。质量。

2.总结运用数学方法的创新素质,可以使学生更系统、更深刻地认识数学思维方法在解决问题中的地位和作用,逐步培养学生良好的人格品质。 这是每节课的重要组成部分。

(7)布置作业。

反馈“数形组合”探索过程,梳理知识体系,完成习题内容。

高中数学教案 篇5

一、教学目标

(一)知识与能力

1.了解平面向量的概念;

2.学会平面向量的表示方法;

3.理解向量、零向量、相等向量的意义。

(二)过程与方法

用联系的方法、类比的观点研究向量。

(三)情感态度与价值观

使学生自然地实现概念的形成,培养学生的唯物辩证思想。

二、教学重难点

(一)教学重点

向量及其几何表示,相等向量、平行向量的概念。

(二)教学难点

向量的概念及对平行向量的理解。

三、教学过程

(一)引入

1.类比法:引入概念

师:在物理中,位移与距离是同一个概念吗?为什么? 在物理中,我们学到位移是既有大小、又有方向的量,像这种既有大小、又有方向的量叫做矢量。在数学中,把只有大小,没有方向的量叫数量,把既有大小、又有方向的量叫做向量。

2.联系法:激活学生的相关经验,加深印象

师:能否举出一些生活中既有大小又有方向的量?

(二)平面向量的表示方法

1.代数表示一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示。

2.几何表示

向量可以用有向线段的起终点字母表示

3.坐标表示

在直角坐标系内,任取两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。

(三)相关概念

1.向量的模

有向线段AB的长度叫做向量的模,记作|AB|。

2.单位向量

引入:用有向线段表示向量,大家所画线段长短不一是为什么呢?(由单位长度引入单位向量)

总结:模等于1个单位长度的向量叫做单位向量,通常用e表示。

3.零向量

长度等于0的向量叫做零向量

4.平行向量(共线向量)

两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行

5.相等向量

设计活动:传花游戏(通过游戏调动兴趣,让学生体会相等向量的本质特征)

总结:长度相等且方向相同的向量叫做相等向量。

本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。具体教学中,要设计一个能让学生领悟概念的过程,引导他们联系具体事例,体会概念的本质特征。要使学生意识到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。

高中数学教案 篇6

教学目标

(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

(5)进一步理解数形结合的思想方法。

教学建议

教材分析

(1)知识结构

曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

(2)重点、难点分析

①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

②本节的难点是曲线方程的概念和求曲线方程的方法。

教法建议

(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

(4)从集合与对应的观点可以看得更清楚:

设 表示曲线 上适合某种条件的点 的集合;

表示二元方程的解对应的点的坐标的集合。

可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

高中数学教案模板2022最新完整版 篇2

教学准备

1.教学目标

1、知识与技能:

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

2、过程与方法:

(1)通过实例,进一步体会函数是描述变量之间的依赖关系的.重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示函数的定义域;

3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

教学重点/难点

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学用具

多媒体

4.标签

函数及其表示

教学过程

(一)创设情景,揭示课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

3、分析、归纳以上三个实例,它们有什么共同点;

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

(二)研探新知

1、函数的有关概念

(1)函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

(2)构成函数的三要素是什么?

定义域、对应关系和值域

(3)区间的概念

①区间的分类:开区间、闭区间、半开半闭区间;

②无穷区间;

③区间的数轴表示.

(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

通过三个已知的函数:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

师:归纳总结

(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域

例1:已知函数f(x)=+

(1)求函数的定义域;

(2)求f(-3),f()的值;

(3)当a>0时,求f(a),f(a-1)的值.

分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

分析:由题意知,另一边长为x,且边长x为正数,所以0

所以s==(40-x)x(0

引导学生小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R.

2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

(5)满足实际问题有意义.

巩固练习:课本P19第1

2、如何判断两个函数是否为同一函数

例3、下列函数中哪个与函数y=x相等?

分析:

1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

解:

课本P18例2

(四)归纳小结

①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

(五)设置问题,留下悬念

1、课本P24习题1.2(A组)第1—7题(B组)第1题

2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

课堂小结

高中数学教案模板2022最新完整版 篇3

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

内容分析:

集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

教学过程:

一、复习引入:

1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2、教材中的章头引言;

3、集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N_或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N_或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

高中数学教案模板2022最新完整版 篇4

一、教学目标

【知识与技能】

掌握三角函数的单调性以及三角函数值的取值范围。

【过程与方法】

经历三角函数的单调性的探索过程,提升逻辑推理能力。

【情感态度价值观】

在猜想计算的过程中,提高学习数学的兴趣。

二、教学重难点

【教学重点】

三角函数的单调性以及三角函数值的取值范围。

【教学难点】

探究三角函数的单调性以及三角函数值的取值范围过程。

三、教学过程

(一)引入新课

提出问题:如何研究三角函数的单调性

(四)小结作业

提问:今天学习了什么?

引导学生回顾:基本不等式以及推导证明过程。

课后作业:

思考如何用三角函数单调性比较三角函数值的大小。

高中数学教案模板2022最新完整版 篇5

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的`大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.高中数学教案格式

一.课题(说明本课名称)

二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

三.课型(说明属新授课,还是复习课)

四.课时(说明属第几课时)

五.教学重点(说明本课所必须解决的关键性问题)

六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

七.教学方法要根据学生实际,注重引导自学,注重启发思维

八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

九.作业处理(说明如何布置书面或口头作业)

十.板书设计(说明上课时准备写在黑板上的内容)

十一.教具(或称教具准备,说明辅助教学手段使用的工具)

十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

3.高中数学教案范文

【教学目标】

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

高中数学教案 篇7

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1.会用坐标表示平面向量的加法、减法与数乘运算.

2.理解用坐标表示的平面向量共线的条件.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

三、教学过程

(一) 知识梳理:

1.向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

(2)设A(x1,y1),B(x2,y2),则

=_________________

| |=_______________

(二)平面向量坐标运算

1.向量加法、减法、数乘向量

设 =(x1,y1), =(x2,y2),则

+ = - = λ = .

2.向量平行的坐标表示

设 =(x1,y1), =(x2,y2),则 ∥ ⇔________________.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;

(2)求满足 =m +n 的实数m,n;

练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),则m-n的值为.

考点2平面向量共线的坐标表示

例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求实数k的值;

练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ()

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1.向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

2.两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则 的值为; 的值为.

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

练:(2014,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于()

【思考】两非零向量 ⊥ 的充要条件: · =0⇔.

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

(3)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的值为()

A.6 B.7 C.8 D.9

练:(2016,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

五、课后作业(课后习题1、2题)

推荐阅读

小编精心推荐

高中数学教学 | 高中数学课件 | 高中数学教师 | 高中数学教学总结
上一篇:最新护理工作总结(锦集六篇) 下一篇:外科实习护士月报总结(通用4篇)
back_img
推荐标签