back_img
好工具 >范文 >实用文

高中数学教案12篇

2024-02-28 08:33:06 高中数学教案

【#实用文# #高中数学教案12篇#】上課前準備好課堂用到的教案和課件是非常重要的。每位老師都應該撰寫教案和製作課件。教案是促進學校內部教育教學協調和互動的重要手段。什麼樣的教學課件才算是好的呢?如果感到困惑,可以參考一下“高中数学教案”,或許能夠給你一些啟示。希望我的回答可以幫助你解決問題,請把它收藏起來,以便日後查看!

高中数学教案(篇1)

“等差数列”教学设计

一、教学内容分析

等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

二、教学目标

1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

三、教学重难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

四、学习者分析

普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

五、教学策略选择与设计

结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计:

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

六、教学资源与工具设计

(一)学习环境:多媒体教室

(二)用到的资源:

1 查找有关等差数列的实例

2 写出上课要提到的问题

3 制作相关PPT课件

七、教学过程

教学环境 教学内容与

教师活动 学生活动 设计意图或依据 情境导入

在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?

由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?

水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?

倾听和观察分析,发表各自的意见。

课堂引入,引向课题 探索与归纳

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。

提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件?

由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b

的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,

从而可得到在一等差数列中,若m+n=p+q则

高中数学教案(篇2)

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

高中数学教案(篇3)

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

【例题示范 探求方法】

(教师活动)打出字幕,给出示范,指导训练.

[字幕]例1 列举从4个元素 中任取2个元素的所有组合.

例2 计算:(1) ;(2) .

(学生活动)板演、示范.

(教师活动)讲评并指出用两种方法计算例2的第2小题.

[字幕]例3 已知 ,求 的所有值.

(学生活动)思考分析.

解 首先,根据组合的定义,有

其次,由原不等式转化为

解得 ②

综合①、②,得 ,即

[点评]这是组合数公式的应用,关键是公式的选择.

设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

【反馈练习 学会应用】

(教师活动)给出练习,学生解答,教师点评.

[课堂练习]课本P99练习第2,5,6题.

[补充练习]

[字幕]1.计算:

2.已知 ,求 .

(学生活动)板演、解答.

设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

高中数学教案(篇4)

1 本节内容在全书及章节中的地位:

“向量”出现在高中数学第一卷(2)第五章第1节。本节内容是传统意义上“平面解析几何”的基础部分,因此在“数学”学科中占有极其重要的地位。

2 数学思维方法分析:

(1)从“向量可以用有向线段表示”所体现的“数”和“形”的变换,可以看“数学”本身的“量化”和“物化”。

(2)从构造手段的角度,在教材提供的材料中,我们可以看到“数与形相结合”的思想。

二、教学目标

根据上述教材结构和内容分析,考虑到学生现有认知结构的心理特点,制定如下教学目标:

1 基础知识目标:掌握“向量”的概念及其表示,并能用它们解决相关问题。

1 / 9 2 能力培养目标:逐步培养学生的观察能力、分析能力、综合能力、类比能力,并准确阐述自己的想法和观点,重点培养学生的认知能力和元认知能力。

3 创新品质的目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合意识; “向量”的教学旨在培养学生的“知识重组”和“数字形成”意识。

4 人格品质目标:培养学生勇于探索、善于发现、独立意识、不断超越自我的创新品质。

三、教学重点、难点、重点

重点:向量概念的引入。

难点:“数”与“形”的完美结合.

重点:本课重点通过“数形结合”培养和发展学生的认知能力和适应能力。

4.课本加工

建构主义学习理论认为,建构是认知结构的形成,其过程一般是先根据逻辑线索组织知识点。然后由多条知识线组成一个知识平面,为什么是“数形结合”在这堂课中提出?应该说,这种处理方法是基于这一理论的体现。其次,本课的过程力求解决以下问题:知识是如何产生的?它是如何发展的?如何将实际问题抽象为数学问题,并赋予抽象的数学符号和表达方式,如何体现生活中客观事物之间的简单和谐关系。

V.教学模式

教学过程是一个非常复杂和动态的教师活动和学生活动的整体。集体意识的过程。教为导,学为主体,互为客体。启动学生自主学习,启发和引导学生实践数学思维的过程,获取知识,发现规律,理解原理,积极发展思维和能力。

六。学习方法

1.让学生在认知过程中专注于掌握元认知过程。

2.让学生将独立思考与多方沟通结合起来。

7.教学程序和假设

(1) 设置问题并创建情景。

3 / 9 1. 提问:在我们的日常生活中,我们不仅会遇到大小不一的数量,而且经常会接触到带有方向的数量。这些量应该如何表达呢?

2. (在学生讨论的基础上,教师指导)通过回忆“力的图形”,分析作用点的大小、方向和作用点之间的关系,关注作用点的相对和绝对影响。运动上的力。

设计意图:

1.将教材内容转化为具有潜在意义的问题,让学生对问题有强烈的意识,学生的整个学习过程就会变成“猜”、“吃”、“糊”、“烦恼”、“忐忑”、“期待”。寻找理由和论据的过程。

2.我们知道,学习总是与一定的知识背景或情境有关。 在实际情境中学习使学生能够利用他们现有的知识和经验来吸收和索引他们当前正在学习的新知识。由此获得的知识不仅易于维护,而且易于转移到不熟悉的问题情境中。

(2)提供真实的背景材料,形成假设。

1.船以 /s 的速度航行。众所周知,一条河长2000m,宽150m。船到对岸需要多长时间?

4 / 9 2. 到了对岸?这句话的实质含义是什么? (学生讨论并期待答案:参考文献未知。)

3.如何将问题抽象为数学问题? (同学们交流讨论,期待答案:要确定一个量,有时除了知道它的大小,还要知道它的方向。)

设计意图:

1。教师可以在学生智力发展略超前(即思维最近发展)的边界上通过问题引导,引导学生形成“数形结合”的思想。

2.通过学生的交流和讨论,将实际问题抽象成数学问题,并给出抽象的数学符号和表达式。

(3)引导探索,寻找解决方案。

1.如何补充以上问题?从我们学到的知识中,我们必须增加“方向”的要求。

2.导向的本质是什么?也就是说,位移的本质是什么?预期答案:大小和方向的统一。

5 / 9 3. 零向量、单位向量、平行向量、等向量、共线向量等序列化概念有什么关系? (重点明确。)

设计意图:

在老师的指导下,在积累现有探索经验的基础上,学生讨论交流,相互评价,共同探讨完成了“数形结合”的思想建设。

2.本题旨在让学生不只“只看书”,敢于并善于质疑、批评和超越书本和老师。这是一种创新素质的突出表现,它使学生不满足于现状,执着追求。

3.尽可能揭示认知思维方法的全貌,让学生从整体上把握解决问题的方法。

(4)总结结论,加强理解。

经过指导,同学们总结出“数与形结合”的思路——“数”和“形”是同一个问题的两个方面。 “数”的性质。

设计意图:促进学生数学思维方式的形成,引导学生掌握“数与形相结合”的思维方法。

6 / 9 (5) 变体扩展和重构。

教师指南:这里我们已经知道,如果要解决一些抽象的数学问题,可以借助图形来解决,这是向量的理论基础。

下面我们继续学习一些与向量相关的概念,并引导学生使用模型演示进行观察。

概念一:长度为0的向量称为零向量。

概念2:长度等于单位长度的向量称为单位向量。

概念3:具有相同或相反方向的非零向量称为平行(或共线)向量。 (规定:零向量与任意向量平行。)

概念4:长度相同、方向相同的向量称为等向量。

设计意图:

1.在老师的指导下,学生在积累已有探索经验的基础上进行讨论和交流,相互评价,共同完成项目。线段与向量关系的构建。

7 / 9 2.这些概念的比较可以让学生加强对“向量”概念的理解,从而更好地“结合数字和形状”。

3.让学生对教学思维方法和应该处于的情境有更加熟练的认识,并将这种认识和思维储存在大脑中,随时提取应用。

(6)总结反馈调整。

1.知识内容:

比如设O为正六边形A B C D E F的中心,分别写出图形和向量O A ,O B、O C 是相等的向量。

2.运用数学思维方法培养创新素质总结:

善于发现现实生活中的问题,从而提炼出相应的解数学题。发现,作为一种意识,可以解释为“对探索问题的意识”;作为一种能力,发现可以解释为“发现新事物”的能力,是培养创造力的基本途径。

b.解决问题采用了“数与形相结合”的数学思想,体现了数学思维方法是解决问题的根本途径。

8 / 9 c。探索问题变体的过程是创新思维活动过程中的多维整合过程。知识重组的过程是一个多维度的整合过程,是一个高层次的知识综合过程,是对课本知识在更高层次上的概括和总结,有利于形成一种开放的、动态的、具有较强自学能力的知识。再生。系统,使思维具有整体功能和创新能力。

2.设计意图:

1.对知识内容的总结可以使课堂教学所传授的知识尽快转化为学生的知识。质量。

2.总结运用数学方法的创新素质,可以使学生更系统、更深刻地认识数学思维方法在解决问题中的地位和作用,逐步培养学生良好的人格品质。 这是每节课的重要组成部分。

(7)布置作业。

反馈“数形组合”探索过程,梳理知识体系,完成习题内容。

9 / 9

高中数学教案(篇5)

1. 该生能以校规班规严格要求自己。有较强的集体荣誉感,学习态度认真,能吃苦,肯下功夫,成绩稳定。生活艰苦朴素,待人热情大方,是个基础扎实,品德兼优的好学生。

2. 该生能严格遵守学校的规章制度。尊敬师长,团结同学。热爱集体,积极配合其他同学搞好班务工作,劳动积极肯干。学习刻苦认真,勤学好问,学习成绩稳定,学风和工作作风都较为踏实,坚持出满勤,并能积极参加社会实践和文体活动,劳动积极。是一位发展全面的好学生。

3. 你是同学拥护、老师信任的班委,乖巧懂事、伶俐开朗、自信大方、乐观合群,是同学们学习的榜样。你爱护集体荣誉,有很强的工作能力,总是及时协助老师完成班务工作,是老师的得力帮手。你心性坦荡,个性鲜明,能大胆说出自己的想法,难能可贵。而你在运动场上的爆发力更让老师同学们惊叹!潜力深厚,希望在高中时期能逐渐发掘出来!

4. 你是个做事小心翼翼,感情细腻丰富的女孩,每次看你认真的样子老师都很感动。你也是幸运的,周边有很多人都在关爱着你,所以,对他们,尤其是父母,记得不要太莽撞,不要太任性,要学着体谅,学着换位思考,学着懂事。另外,今后要多运动、多锻炼,有健康才能成就美好未来!

5. 你坚强勇敢、乐观大方的性格让老师非常欣赏。学习上始终保持着上进好学的决心和韧性,生活中始终能做到豁达开朗,还有着良好的审美和绘画的专长,令人钦佩!以入世的态度做事,以出世的态度做人,这是我送你的一句话,希望你保持好心态,迎接新的学习生活。

6. 最有希望得成功者,并不是才干出众的人,而是那些最善于利用时机去努力开创的人。你是很有才华的孩子,老师希望你能把握好机会,求得上进。你聪明,但也有着许多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,坚定目标致力于学习,定能大限度地发挥你的聪明才智!

7. 该生遵纪守法,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。是一位诚实守信,思想上进,尊敬老师,团结同学,热心助人,积极参加班集体活动,有体育特长,学习认真,具有较好综合素质的优秀学生。

8. 你聪颖活泼,浑身洋溢青春气息。你爱好广泛,善钻精思,具备一定能力,潜质无限。但是在有些时候,在面临一些问题的时候,你总表现得太过紧张,其实,征服畏惧、建立自信的最快最确实的方法,就是大胆地去做你认为害怕的事,直到你获得成功的经验。继续努力!

9. 你是对3班这个集体的成长贡献很大的孩子,是老师的得力帮手。你干练沉稳,坚强隐忍,能从大局出发考虑问题,在很多时候能独当一面。你独立能力强,能够吃苦,但在进入高中的学习上却显得有些吃力。其实你还有很深的潜力尚未挖掘,找对方法,好好加油,世上没有绝望的处境,只有对处境绝望的人,请乐观一点,踏实地走好接下来的每一步!

10. 你是个能独立、有主见的女孩,有自己的想法,有一定的决断力。但是独立不代表乖张,有想法不代表恣意妄为。令人高兴的是,你在这点上做的还是不错的。晟君,老师希望你能一如既往地关注于学习而不懈怠,能坚持怀揣着平和感恩的心态简单快乐地生活。

11. 你给我的第一印象是有些沉默,其实和朋友在一起时还是很有自己想法的对吧?你看,你布置的新年教室多么出彩!请继续秀出真实而精彩的你!这半个学期的学习有点力不从心,请保持谨慎和细心,保持好的学习习惯,及时弥补所缺漏的环节,大步向前进!

12. 该生认真遵守学校的规章制度,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。尊敬师长,团结同学。学习态度认真,能吃苦,肯下功夫,成绩稳定上升。是有理想有抱负,基础扎实,心理素质过硬、全面发展的优秀学生。

13. 你是一个真诚待人、温柔可爱的女生。也许是因为你有些不紧不慢的性格,所以在学习上有时候行动力不够坚决,造成了学习成绩的不稳定。请多利用假期时间好好补缺补漏,向上的姿态才是最重要的!

14. 老师同学们都在说你是个很有责任心和上进心的孩子,在班级需要的时候,你承担了劳动委员的重任,经常最后一个离开,就为了班级能有个整洁的环境。老师很感谢你!而更可贵的是,你懂得安排自己的时间,在工作的空隙抓紧时间做作业。希望下学期你的学习成绩也能随你的毅力和执着步步攀升,加油,羽腾!

15. 其实你拥有你自己都不确知的才华,从你的文字中可以读出这样的信息:你时常沉醉在自己的小世界中,做自己喜欢做的事情。老师希望你能敞开心扉,多与旁人交流你快乐的体验和想法,不要吝啬展示自己!还有,成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。请务必抓紧每寸光阴,努力学习!

16. 你知道吗?在世界上那些最容易的事情中,拖延时间是最不费力的。而学习却是艰辛的劳动过程。表面安静的你其实心里有着自己的想法和烦忧。于是在不经意间,精力被不自觉地转移到一些琐事上,却总无法完全集中心智于学业。也许你也已经意识到,也有了些许进步,那么请千万记住要持之以恒,要付出比别人更多倍的努力!

17. 你是班级的数学科代表,老师很高兴选择你担任这个职务,不仅能促进自己的进步,而且也展现了你负责工作的一面。但是学习是要和工作一样,需要一丝不苟的态度,包括上课的听讲是否及时而有效,包括功课的完成是否严谨而认真。下学期,愿看到一个更加全神贯注更加专心致志的你!

18. 我一直难忘在运动会上你担任前导牌的样子,为班级添光增彩了不少!你有着绘画的特长,是个善良、真诚的女孩,有着细腻丰富的内心,也许只需一点鼓励,你便会勇敢走下去,希望能在平时多听见你爽朗的笑声!

19. 可爱、热情、谨小慎微,这都是你的代名词。你略为腼腆的微笑让人印象深刻。老师一直认为你是能够认真仔细地作好每一件事情、成就每一个细节的,因此,希望你能珍惜时间,提高效率,在学习上狠狠加油!

20. 其实,任何事都是有重量的,那么,就看你把它变成压力还是重力了。在这个方面,我很高兴地看到你做的很好,你学习自觉,成绩便是努力的证明。老师安排你做物理科代表就是希望能多培养你的责任意识、大局意识和管理能力,希望以后在这方面能看到你更加出色的表现!

21. 你是个可爱善良,懂事乖巧的女孩。作为语文科代表,兢兢业业,一丝不苟。你对人也是特别真诚热情,偶尔透露出的忧郁是旁人不易察觉的。但是你知道,成长就是破蛹成蝶的过程,高中是人生的重要阶段,勇敢地迈好每一步吧,享受成长带来的所有痛苦和快乐!

22. 你很有能力,也很潜力,但欠缺的却是耐力和毅力。君子厚积而薄发,希望你能振作精神,跟上进度,迎头赶上,期待你获得更大的进步!

23. 你曾经和我说过你的理想,但你对理想的憧憬和你所付出的努力程度却总是难成正比。若现在你觉得有障碍挡在前行之路上,那就说明你还没有把目标看的足够清楚。宁在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在临事时无法适从。你现在欠缺的就是对自己发狠奋进的恒心,柏宇,“要想人前显贵,必定人后受罪”,成功要靠实践去争取,而不是光靠几句好听的决心话!

24. 你乖巧大方,组织能力一流,但在学习上总显得有些力不从心。快马加鞭迎头赶上固然是必需,但也别太心急,要知道,欲速则不达,只要踏实努力,不懂就问,采用适合自己的学习方法,就会看到进步。也许刚开始的时候进步很小,小到你看不见,但是不要灰心,万事开头难!将事前的忧虑,换为事前的思考和计划,彻底放松,加强锻炼,养足精神再迎战!你能做到的,蔡炜,加油!

25. 该生能遵守校纪班规,尊敬师长,能与同学和睦相处,勤学好问,有较强的独立钻研能力,分析问题比较深入、全面,在某些问题上有独特的见解,学习成绩在班上一直能保持前茅,乐于助人,能帮助学习有困难的同学。

26. 不论在体育场还是教室里,看到你神采奕奕的样子,总让人联想到“英姿飒爽”这四个字。这确是一个高中生应该有的精神面貌。你做事认真,顾全大局,真的非常难得。希望能保持这样良好的状态,继续前进!也希望能够多和老师同学交流,多提些对班集体建设的好建议!

27. 该生能以校规班规严格要求自己,积极参加社会实践和文体活动。尊敬师长,团结同学。集体观念强,劳动积极肯干。积极参加各种集体活动和社会实践活动。学习目的明确,刻苦认真,成绩稳定,是一个有理想、有抱负,基础扎实,心理素质过硬,全面发展的优秀学生。

28. 我很高兴看到你是个有上进心,有责任感,能够让家人、师长宽慰的孩子。有努力就有回报,你下半学期的表现不就证明了这一点吗?进步是随着时间节节上升的,不要太过急躁,要知道,若你不给自己设限,则人生中就没有限制你发挥的藩篱。新学期要重整旗鼓,再接再励!

29. ××× 独立性较强,对自己的能力也有准确的定位。建议今后学习上要养成勤思爱问的习惯,不能做井底之蛙,满足于现状,要充分利用他人的智慧,最后达到“好风凭借力,送我上青云”的目的。

30. ××× 每天在教室,都能看到你埋头苦读的身影,可见读书的态度很端正;而你每一次考试的成绩虽然不拔尖,却是在稳步前进,可见读书的效率还不错。请继续保持这种虚心求学、稳步前进的态势,相信一年半以后的高考,你必将崭露头角,脱颖而出。

高中数学教案(篇6)

一、课程性质与任务

数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

了解:初步知道知识的含义及其简单应用。

理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

第2单元不等式(8学时)

第3单元函数(12学时)

第4单元指数函数与对数函数(12学时)

第5单元三角函数(18学时)

第6单元数列(10学时)

第7单元平面向量(矢量)(10学时)

第8单元直线和圆的方程(18学时)

第9单元立体几何(14学时)

第10单元概率与统计初步(16学时)

2.职业模块

第1单元三角计算及其应用(16学时)

第2单元坐标变换与参数方程(12学时)

第3单元复数及其应用(10学时)

高中数学教案(篇7)

教学目标

知识与技能目标:

本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

(1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:

(1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:

(1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

(2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

教学重点与难点

重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

难点:发现、理解及应用导数的几何意义。

教学过程

一、复习提问

1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

求导数的步骤:

第一步:求平均变化率导数的几何意义教案;

第二步:求瞬时变化率导数的几何意义教案.

(即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

师:这就是平均变化率(导数的几何意义教案)的几何意义,

3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

导数的几何意义教案

追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

由导数的定义知导数的几何意义教案导数的几何意义教案。

导数的几何意义教案

由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

二、新课

1、导数的几何意义:

函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

即:导数的几何意义教案

口答练习:

(1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

(C层学生做)

(2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

导数的几何意义教案

2、如何用导数研究函数的增减?

小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

导数的几何意义教案

函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

例2求曲线y=x2在点M(2,4)处的切线方程.

解:导数的几何意义教案

∴y'|x=2=2×2=4.

∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

由上例可归纳出求切线方程的两个步骤:

(1)先求出函数y=f(x)在点x0处的导数f'(x0).

(2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).

提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

(先由C类学生来回答,再由A,B补充.)

例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

(2)过P点的切线的方程。

解:(1)导数的几何意义教案,

导数的几何意义教案

y'|x=2=22=4.∴在点P处的切线的斜率等于4.

(2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

B类学生做题,A类学生纠错。

三、小结

1.导数的几何意义.(C组学生回答)

2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

(B组学生回答)

四、布置作业

1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

教学反思:

本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案(篇8)

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

高中数学优秀教案高中数学教学设计与教学反思

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由,你能否知道sin2100的值吗?引如新课。

设计意图

高中数学优秀教案高中数学教学设计与教学反思

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3、Sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。

(三)问题一般化

探究一

1、探究发现任意角的终边与的终边关于原点对称;

2、探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

3、探究发现任意角与的三角函数值的关系。

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

高中数学教案(篇9)

三维目标:

1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

2、过程与方法:

(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

教学方法:

讲练结合法

教学用具:

多媒体

课时安排:

1课时

教学过程:

一、问题情境

假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

二、探究新知

1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、

2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

下列抽样的方式是否属于简单随机抽样?为什么?

(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

(3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

3、常用的简单随机抽样方法有:

(1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。

(2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。

第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785

继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

三、课堂练习

四、课堂小结

1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

2、简单随机抽样的方法:抽签法随机数表法

五、课后作业

P57练习1、2

六、板书设计

1、统计的有关概念

2、简单随机抽样的概念

3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

4、课堂练习

高中数学教案(篇10)

一、教学目标

【知识与技能】

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】

通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点

【重点】

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】

二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程

(一)复习旧知,引出课题

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案9

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.高中数学教案格式

一.课题(说明本课名称)

二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

三.课型(说明属新授课,还是复习课)

四.课时(说明属第几课时)

五.教学重点(说明本课所必须解决的关键性问题)

六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

七.教学方法要根据学生实际,注重引导自学,注重启发思维

八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

九.作业处理(说明如何布置书面或口头作业)

十.板书设计(说明上课时准备写在黑板上的内容)

十一.教具(或称教具准备,说明辅助教学手段使用的工具)

十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

高中数学教案(篇11)

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。——《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1、了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2、体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3、在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1、分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2、选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教案(篇12)

一、教学目标

1、知识与技能:

(1) 结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、 过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

二、教学重点: 正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

四、教学过程

(一)新课导入

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;

(2)请你用图像表示1个细胞分裂的次数n( )与得到的细胞个数y之间的关系;

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数

分裂次数 1 2 3 4 5 6 7 8

细胞个数 2 4 8 16 32 64 128 256

(2)1个细胞分裂的次数 与得到的细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

(3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数. 细胞个数 与分裂次数 之间的关系式为 .细胞个数 随着分裂次数 的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量Q;

(2)用图像表示每隔20年臭氧含量Q的变化;

(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.

解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

(2)用图像表示每隔20年臭氧含量Q的变化,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道, 随着时间的增加,臭氧含量Q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数. 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少.

[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

正整数指数函数的定义:一般地,函数 叫作正整数指数函数,其中 是自变量,定义域是正整数集 .

说明: 1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 .写出 , 间的函数关系式,并求出经过5年,森林的面积.

分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式.

解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2

补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,, n个月后他应取回的钱数为y=2000(1+2.38%)n; 所以n与y之间的关系为y=2000(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.

补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。

推荐阅读

上一篇:关于新春节送温暖活动简报模板 下一篇:国家宝藏观后感模板8篇
back_img
推荐标签