【#实用文# #分数的基本性质课件17篇#】分数的基本性质这部分内容,在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。下面是小编为你带来的分数的基本性质课件,希望对你有所帮助。
分数的基本性质课件 篇1
一、教学目标
(一)知识与技能
知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
(二)过程与方法
经历剪一剪、涂一涂、摆一摆等多种操作活动,理解“部分与整体”的关系。
(三)情感态度与价值观
渗透数形结合的'思想,初步了解分数在实际生活中的应用。
二、教学重难点
教学重点:学会把一些物体作为一个整体平均分成若干份时,其中的一份或几份可以用分数表示。
教学难点:在活动中体会“部分与整体”的关系。
三、教学准备
课件等。
四、教学过程
(一)复习导入,揭示课题
1.复习导入。
(1)课件出示第100页例1(1)左侧的图,让学生用分数来表示涂色部分。
(2)学生说分数,教师板书 。
(3)这里的表示什么意思?如果涂色的部分是2份呢?
2.揭示课题 。
教师:、都是分数,你对分数还有哪些了解?
预设:分子、分母、分数线、平均分……
【设计意图】既复习了旧知,又为学习新知作好了铺垫。
(二)动手操作,探索交流
1.初步感知整体由“1个”变成“多个”。
(1)课件动态演示第100页例1(1)右侧的图。
(2)同桌讨论:你看到了什么?
(3)涂色部分是其中的几份?这样的1份还能用分数表示吗?
(4)课件演示:把4个小正方形看成一个整体(用集合圈将4个正方形圈起来),平均分成4份,每份是这4个小正方形的。每份是几个小正方形呢?
(5)这样的2份是这4个小正方形的几分之几?3份呢?分别是几个小正方形?
2.从份数角度理解部分与整体的关系。
(1)课件出示第100页例1(2)的图,动态演示平均分的过程。
(2)说一说你看到了什么?
(3)1份是苹果总数的几分之几?你能说说这个表示的意思吗?
在学生交流的同时,教师用课件进行演示。
(4)1份是苹果总数的,那这一份有几个苹果呢?谁能完整地说一说?
(5)2份是苹果总数的几分之几?有几个苹果?3份呢?
3.自主探索,加深认识。
(1)课件出示6个苹果图,请学生试着平均分一分、画一画,想一想可以用哪个分数表示?其中的一份或几份,每份分别有几个苹果?
(2)学生独立思考,自主探究。
(3)汇报交流。
(4)对比提升。
课件闪动其中的一份,追问:都是一份,为什么可以用不同的分数表示?
4.比较辨析,提升认识。
课件出示:
你能用分数表示其中的一份吗?
你发现了什么?为什么苹果的总数不同,每一份的数量也不同,一份都可以用表示?
【设计意图】通过分一分、画一画、剪一剪等多种操作活动,在具体的情境中,让学生进一步认识分数,循序渐进地让学生体会“1”是一些物体时如何用分数表示整体与部分的关系。
(三)课堂练习,巩固新知
1.完成第100页“做一做”第1、2、3题。
2.完成练习二十二第1、2、3题。
【设计意图】“做一做”的操作活动需要在理解了分数意义的基础上进行,在活动中,应引导学生思考:“分的对象是什么”“平均分为几份”及“取出几份”,体会分数的部分与整体含义中的三个关键要素。
(四)全课总结,升华认识
1.通过这节课的学习,你有哪些收获?
2.你还有什么疑惑的地方?
分数的基本性质课件 篇2
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学资料
《分数的基本性质》一课是五年级下册第四单元的一个资料。这部分资料是在学生学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮忙学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,明白分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识资料概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)透过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括潜力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:
理解和掌握分数的基本性质
教学难点:
学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。
教具学具:
课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在用心的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师透过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,到达检验自学的目的。
五、说教学过程
(一)、创设情境激趣引新
(二)、新知探索
动手操作、形象感知
观察比较、探究规律
首尾照应、释疑解惑
(三)、巩固新知
判一判填一填找一找
(四)、扩展延伸
1、创设情境,激发兴趣,揭示课题。
上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,透过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、探索新知
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后透过电脑再进一步证实学生的发现:透过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅仅复习了分数的好处,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,透过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的好处,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行比较,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的潜力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、巩固新知
在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包内含6/12=()/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只但是说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的潜力。
4、拓展延伸
透过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习资料,激发学生不断探索新知的欲望。
六、板书设计
分数的基本性质
分数的分子、分母同时乘以或除以相同的数,
分数的大小不变。
分数的基本性质课件 篇3
宋贺彩科长和王丽老师的《分数的基本性质》两节课各有特色,下面就这两节课谈谈自己的体会。 宋科长的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。 这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组填空题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”
再根据分数与除法德关系,引导学生把除法算式改写成分数的形式,从而概括出分数的基本性质。 练习题的设计也是由浅入深,尤其是分数大小的比较中,“分子分母都不相同的怎样比较大小”时,让学生自己讨论寻求解决的办法,体现了自主学习。王丽老师的《分数的基本性质》一节课,充分体现了新的课程标准与新理念,给我的感受也很深刻。 首先这节课的引入设计得很好,从学生的兴趣出发,通过孙悟空给猴子们分甘蔗,大猴子分得每根甘蔗的1/2,小猴子分得每根甘蔗的2/4,劳猴子分得每根甘蔗的3/6,小猴子说分得不公平,由此组织学生展开讨论,这样一下子就吸引了学生的注意力,激发了学生学习积极性和兴趣。 学生自己通过合作学习探讨得出:
1/2=2/4=3/6之后又引导学生去发现这些分数之间的变化规律,从而得出分数的基本性质,并强调了“同时”、“相同的数”、“0除外”等关键处。 练习题的设计也是形式多样,尤其是“小游戏”,老师说分母,学生说分子或老师说分子,学生说分母;“连续写出多个相等的分数”等都是从学生的兴趣出发,调动了学生的多向思维,效果也不错。
听了李老师的一节“分数的基本性质”的数学课,给我留下了深刻的印象。
整节课教者设计了四个教学环节,猜想与验证,归纳再验证,巩固与应用,拓展与延伸。如从课的开始,就让学生“猴妈妈分饼”的故事中进行猜测,其实这三个分数的大小相等。让学生运用自己原有的知识经验进行验证,得出规律后并没有满足,而是继续利用“性质”的应用再次检验结果的正确性。通过学生不断猜想,不断验证,再猜想,验证,学生的兴趣比较高,他们希望能向别人证明自己的猜想,这猜想一旦被别人认可,学生的自信心就会大增。教者大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,我认为这是本节课一大亮点。
但是,我感觉本课教学中,验证得还不够透彻,部分同学还有疑虑。如果能让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。
沈老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。
1、教材简析《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2、教材处理
(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。
(2)把总结式教学为学生自我发现、自我总结的探究性学习。
(3)以教师的主导地位转化为学生为主体的学生探究性学习。
3、教学过程这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”
在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。
今天听了花老师《分数的性质》,不落俗套,与学生真诚对话,和谐互动,听后令人回味无穷。花老师教师教态自然、语言清晰、数学语言表述准确。她通过引导观察→寻找规律,发现规律,我觉得这是一堂充满生命活力的课堂,从中我得到了一些鲜活的经验和有益的启示。具体概括以下几点:
一、创设情境,激发兴趣。
在本堂课中,教师通过创设老和尚分饼的教学情景,一下子吸引了学生的注意力,使学生急于想知道三个和尚分得的饼是否一样多,促使学生动脑想,达到了激发学生积极参与学习活动的目的。让学生感知分子不同,分母不同而大小却相同这一现象从而学生在思想上真正作好了探究新知的准备。
二、自主、合作探究。
在教学中最大限度地启发学生积极参与教学活动的过程,注重问题的探索性,留给学生充分的思维空间,让他们自己去发现、去探索知识。教师就这样把抽象的数学知识贯穿于故事情节中,使学生随着情节的推进一步步探究知识的生成过程,学得趣味盎然,意犹未尽。《新课程标准》中指出:学生是学习的主人,教师是学习的组织者、引导者。这样的课堂是和谐的、具有生命力的课堂。
三、及时练习,发展能力。
在练习设计方面,教师尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,同时也应注重练习的层次性、趣味性与开放性。喜欢游戏是儿童的天性。“兴趣”对学习效果起决定性作用,竞赛活动更能充分调动起孩子们的每一个神经细胞。
在课堂中设计了在一分钟之内写与相等的分数竞赛,强烈地刺激学生想一决高下的心理,从而更有效地掌握了知识。学生在形式多样的练习中发展了能力。
创设一种和谐愉悦的气氛,让学生能够从中感受到学习的乐趣,并主动探求知识,发展思维。能为学生提供充分自主探求的空间,把探索、发现知识的权利还给学生,让学生亲身体验数学知识的形成过程,因此,教师在教学“分数的基本性质”时力图让学生在开放、愉悦、和谐的氛围中参与学习。
分数的基本性质课件 篇4
教学目标
1、进一步理解分数基本性质的意义,掌握约分的方法。
2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。
教学重难点约成最简分数
教学准备:分数卡片口算卡片
教学过程
一、自主回顾
回顾一下对约分的理解情况
突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。
师:什么是最简分数?
说一说。
二、巩固练习
师分数卡片判断
1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)
你是怎样寻到的?说说自己的理由好么?
2、能用不同的分数表示下面各题的商吗?
练习十一第8题
师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的`魅力。
师:你能写出不同的除法算式吗?
=()÷()=()÷()
你能说出几个除法的算式?
这些算式之间有什么联系?
3、快乐学习超市
超市画面快乐套餐1快乐套餐2
快乐套餐1:比一比○○0.4
计算并化简+=-=
在()填上最简分数20分=()时
快乐套餐2、3同上。
(分组练习小组代表汇报整合了练习十一10至14题)
4、集中练习
把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?
分母是10的最简分数有几个?
请你提出一个类似的问题。
课堂作业
练习十一第9题,12、13、14题各自选2个
课后练习:完成练习册上的相应练习。
分数的基本性质课件 篇5
一、教材分析
本节资料属于概念教学。《分数基本性质》在小学数学学习中起
着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的好处,明确分数与除法的关系,商不变
性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同
的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,思考到学生已有的知识、生活经验和认
知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”能够细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。
就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
分数的基本性质课件 篇6
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
分数的基本性质课件 篇7
教学目标:
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:长方形纸片、彩笔、各种分数卡片。
教学过程
一、创设情境,激发兴趣
1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。
3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以 )
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,
(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×()5×()=9()
824=8÷()24÷()=()3
学生口答后,要求说出是怎样想的?
分数的基本性质课件 篇8
分数的基本性质是约分和通分的基础。而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面:
一、构建新的课堂教学模式。
传统的教学往往只重视对结论的记忆和模仿,而这节课老师把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。在课堂上,老师给学生提供了一组组材料,让学生去观察、感悟,并且进行大胆猜想,进而又进行了验证。当学生验证出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,教师并没有立即让学生去归纳,而是让学生用自己感知的这一规律去写一组相等的分数,这样可加深对分数的基本性质的理解,为后面归纳分数的基本性质奠定了基础。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。
二、培养学生勇于猜想,大胆创新的精神。
牛顿曾说:“没有大胆的猜想,就做不出伟大的发现。”因此,我们在日常教学中,应鼓励学生进行大胆猜想,从而发展数学思维。本节课,当老师引导学生观察几组分数的分子、分母变化情况后,先后鼓励学生猜测:分子、分母都乘同一个数,分数的大小不变;分子、分母都除以同一个数,分数的大小不变,以引起学生探究的兴趣。
三、为学生提供了大量数学活动的机会,让学生真正成为学习的主人。
《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,教师先引导学生观察几组分数的分子、分母发生了怎样的变化?分数的大小有没有变化?然后在猜测与动手操作验证中,逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位。
分数的基本性质课件 篇9
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
分数的基本性质课件 篇10
教学目标:
1.经历探索分数的基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变得分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点:
探索和理解分数的基本性质
教学难点:
理解分数的.基本性质,并能应用其解决一些简单问题。
教具准备:
圆、长方形纸片
教学过程:
一、找分数
出示40的圆形图,画出阴影,提问:你可以用分数表示出阴影部分得面积吗?
6/9和2/3表示有什么样的关系?
折一折
说一说这些分数有什么共同之处。
归纳:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
二、尝试练习
学生独立尝试填写,教师巡视指导,然后让学生交流自己的思考过程。
三、巩固
指导学生进行练习,并让学生说说是运用了分数的什么性质?
练一练
涂一涂,填一填。完成第1、2题。
学生填写完要说说想法,重点说说分母由3变成了18要乘6,所以分子2也要乘6。
完成练一练第3、4题。
板书设计:
找规律
分数的分子和分母都乘以
或除以相同的数(0除外),
分数的大小不变
分数的基本性质课件 篇11
教学目标
(一)认识到分数,小数加减混合运算,应针对题目的具体情况,选择合理、正确的方法进行计算。
(二)培养学生具体问题具体分析的习惯。
教学重点与难点
选择合理、正确的计算方法。
教学用具
教具:投影片、卡片。
学具:反馈牌。
教学过程设计
(一)复习准备
1.把下面的分数化成小数。(口算卡片)
2.把下面的小数化成分数。(口算卡片)
0。5 0。4 0。125 0。375
0。75 0。03 0。04 0。16
3.下列分数中哪些能化为有限小数?哪些不能化成有限小数?(学生用反馈牌、能用的举√,不能用的举×表示。)
4.如何判断一个分数能不能化成有限小数?
教师:我们已经学过小数的加减运算,也学过了分数的加减运算。如果分数、小数同时出现在同一道题中,该如何计算呢?这节课就研究这个内容。教师板书课题:分数、小数加、减混合运算。
(二)学习新课
1.题目中的分数能化成有限小数
教师:想一想,你准备怎样计算这道题?
学生口答后,请同学按自己的想法计算出来。(请几位同学写在投影片上。)
(2)选出几位同学的投影片作评价,选择时,选出不同方法计算的,计算有错误的。
先评价有错误的计算,找出错误原因,再投影出正确的计算:
教师:请做这题的两位同学分别讲一讲自己的算法:
教师:比较这两种算法,哪一种更简便?为什么?
学生口答后,教师在例4下面板书:
解法1:小数化分数。
解法2:分数化小数,更简便。
(3)笔算下面各题:(请几位同学写投影片。)
订正后请学生观察:观察上面各题中的分数,有什么共同特点?学生口答后教师在例4下方板书:分数都能化成有限小数。教师:清说一说你做这组题有什么体会?学生口答后教师概括:,如果分数能化成有限小数,选择化为小数计算比较简便。
2.题目中的分数不能化为有限小数。
教师:观察这道题里的分数,与例4中的分数有什么不同?
教师:这道题应该选用什么方法计算呢?请同学们试一试。(请几位同学写投影片。)
(2)选出几份学生写的投影片作评价,计算有错误的要找出错误原因。
教师:为什么这道题不选用分数化小数来计算?(教师板书:小数化分数。)
学生口答后教师板书出:有的分数不能化成有限小数。
教师:计算题一般都要求计算出精确的结果,所以不能随意取近似值,但是如果题目允许取近似值,这种题也可以采用分数化小数来计算。例如这道题:
教师:请说一说,脱式过程当中什么时候用“≈”,什么时候用“=”?
学生口答后教师再说明:计算中,哪一步取了近似值,哪一步就用“≈”,没有取近似值的都应用“=”。
(3)先看一看各题中的分数有什么特点,再计算。(写本上,集体订正。)
教师:说一说做这一组题的体会。
学生口答后教师把板书补充完整:,题目中有的分数不能化成有限小数时,一般应把小数化成分数来计算。
计算练习:(请几位同学写投影片。)
(三)巩固反馈
1.把下列算式分组,你认为把分数化为小数计算简便的为A组;把小数化为分数计算的在B组,在题后的括号里填上A或B。(投影)
2.请选用适当的方法,写出运算的第一步。(请几位同学写在投影片上。)
3.计算下面各题。(每题都请几位同学写在投影板上。)
4.取学生投影片上有错误的进行讨论。
(四)课堂总结与课后作业
1.怎样选择合适的方法来进行计算。
教师板书:具体题目具体分析,选择合适的方法进行计算。
2.作业:课本151页练习三十四,2,3,4,5。
课堂教学设计说明
小数、分数加减混合运算,是分数、小数互化;小数、分数加减计算等知识的综合运用。对不同的题目来说,或者选用分数计算,或者选用小数计算更好,所以本节教学选用了按题组让学生进行计算、讨论,目的是使学生对一般的情况取得一些判断,选择算法的经验,提高对计算题的审题能力,同时也使学生认识到最重要的是具体题目要具体分析。在整个学习过程当中,都安排了同学对错题的分析讨论,以帮助学生提高计算的正确率和养成良好的习惯。
分数的基本性质课件 篇12
教学前的思考:
一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。
二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。
三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。
教学设计:
一 故事提供“猜想”素材:Flash动画故事引入(教师出示课件)
师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?
生:高兴!
师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)
师:(欣赏后)同学们,你知道哪个和尚吃的多吗?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)
二 用事实“验证”,完整性质。
1.实际操作列等式证实分数大小相等。
师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的
(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)
师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。
(随着学生的回答,老师将板书的三个分数用“=”连接。)
2.观察课件证实分数大小相等。
师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?
师:这三个分数所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接。)
3.初步概括分数基本性质
师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?
生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)
师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)
师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)
生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)
师:你们观察的真仔细!请大家给点掌声好吗?
(学生掌声起,激情高长,课堂教学充满活力。)
师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?
(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)
4、完整分数基本性质:
师:(出示课件)请同学们填空:
(教师请一位会操作鼠标的同学在课件中填空)
师:第3题( )里可以填多少个数?第4题呢?
生:可以填无数个。
师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)
生:不能填零。
师:为什么不能填零?
生:分数的分母不能为零。
(教师对学生的回答进行评价)
师:所以我们总结的这条规律必须加上一个条件“零除外”
(教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)
师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)
三 深入理解分数基本性质
1.学生自学,深入理解性质。
师:请同学们把书翻到108页,自读分数的基本性质。
师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?
生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)
2.学生独立完成做一做1。(完成后小组内互相评价)
3.找出与相等的分数:
(教师出示课件,请一位同学在课件中连线,教师进行评价)
4.请同学们自学并完成例2、(教师巡视,个别进行辅导)
四 照应Flash动画故事,渗透“形式与实质”的辩证观点
教师在黑板上出示自制的三个同样大小的圆饼
师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)
生:三个和沿吃的一样多。
师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。
五 课堂小结:这节课你有什么收获?(学生板书课题)
教学后的感悟:
1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。
2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。
3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。
分数的基本性质课件 篇13
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
分数的基本性质课件 篇14
这天我说课的资料是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学过程”五个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化等数学思想方法。
二、说教材
分数的基本性质是九年义务教育小学数学第十册第四单元的资料,这一部分教学资料是在学生学习了分数的好处、分数与除法的关系、商不变的规律等知识的基础上进行教学的。在分数教学中占有重要的地位,它是约分、通分的基础。根据教材资料和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,明白分数基本性质与整数除法中商不变规律的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、分析、比较、决定及动手实践的潜力,进一步拓展学生的思维。
2、情感、态度:激发学生用心主动学习的情感状态,养成注意倾听、观察事物的学习习惯。
3、教学重点和难点:理解和掌握分数的基本性质的概念,运用分数的基本性质,把一个分数化成指定分母而大小不变的分数。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在用心的思维
4、树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想。
因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以到达促进学生学习方式的转变,实现教学目标的目的
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师透过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,到达检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
第一、以故事导入,培养学生的学习兴趣。在进行备课时,我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。为此,我王大爷分地的故事,让王大爷给三个儿子分地,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,这样一来,学生学习数学的兴趣必然提高,学习的用心性也会空前高涨。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原先,三个儿子分到的地实际上是一样多的,只但是是平均分的分数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的潜力。
第二、发挥群众优势,培养学生的合作潜力。为了有效解决教学中“少数学生争台面,多数学生做陪客”的现象,我在教学中也引入了小组合作学习的形式,提高学生学习的主动性,使学生在获取数学知识的同时,构成良好的人际关系,促进学生的全面发展。为此,在观察相等分数的变化规律时,我让学生充分展开讨论。大家你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分别依次乘2、乘4、乘8,而分数的大小不变的变化规律。从而慢慢地引出了分数的基本性质。
第三、精心设计练习题,提高学生解题潜力。数学教学,做题目是其中最重要的一个方面。但传统教学教师往往进行所谓的题海战役,让学生反复做、重复做,这样不仅仅做累了学生同时也做怕了学生,消磨了学生学习的用心性。所以如何使学生愿做、乐做,同时又能到达教学目标,提高学生的数学综合潜力,是摆在我们面前的一个重要课题。为此,在教学《分数的基本性质》时,我也精心设计练习题。首先是题型变化丰富。练习中,我安排了一些决定题、口答题。题型的丰富不仅仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的潜力。
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能到达理想的教学效果。
分数的基本性质课件 篇15
教学目标
1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2. 师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4. 研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。
5. 深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
分数的基本性质课件 篇16
教材简析:
分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。
设计理念:
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。
教学目标:
1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题
2、培养学生观察、分析、思考和抽象、概括的能力
3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育
教学重点:
使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
每生三张正方形纸
教学方法:
演示法、观察法、讨论法、交流法。
分数的基本性质课件 篇17
教学目标
1 、知识与技能:
使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、过程与方法:
学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3 、情感态度与价值观:
激发学生积极主动的情感状态,体验互相合作的乐趣。
教学重难点
1、教学重点:
使学生理解分数的基本性质。
2、教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学工具
课件
教学过程
一、故事情境引入
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的xx,老二分到了这块地的xx。老三分到了这块的xx。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
2、120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
120÷30= 4(120×3)÷(30×3)= 4(120÷10)÷(30÷10)= 4
3、说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
4、让学生大胆猜测:
在除法里有商不变的'性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
(随着学生的回答,教师板书课题:分数的基本性质。)
二、新知探究
1、动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
你发现了什么?
(2)观察比较后引导学生得出:
它们的分子、分母各是按照什么规律变化的?
(3)从左往右看:
平均分的份数和表示的份数有什么变化?
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:
引导学生观察明确:
xx的分子、分母同时除以2,得到什么?
板书:
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
(7)小结:
分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。
2、分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3、学习把分数化成指定分母而大小不变的分数。
教学例2
(一)把分数化成分母是12而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
(二)巩固提升
1、下面算式对吗?如果有错,错在哪里?为什么会这样错。
2、判断,并说明理由。
(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。(×)
(2)把x的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。(√)
(3)把x分子乘以3,分母除以3,分数的大小不变。(×)
课后小结
这节课我们学习了什么内容?你们有了什么收获呀?
利用分数的基本性质时,应该明确一下几点:
①分子、分母进行的是同一种运算,只能是乘以或除以。
②分子、分母乘或除以的是相同的数。而且必须是同时运算。
③分子、分母同时乘或除以的数不能使0。
④分数的大小是不变的。
板书
分数的基本性质。
分数的分子和分母同时除以相同的数,分数的大小不变。
分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。