back_img
好工具 >范文 >实用文

分数除法课件集合

2024-03-15 15:12:07 分数除法课件 除法课件

【#实用文# #分数除法课件集合#】教案课件是老师需要精心准备的,这就需要我们老师自己抽时间去完成。教案的编写需要贯穿教学目标和学生需求,撰写教案时需要考虑什么?考虑到你的需求,栏目小编特意整理了“分数除法课件”,希望我的文章和分享能够为你提供一些步入正确轨道的方法和技巧!

分数除法课件【篇1】

内容:

本册教科书第28页例2和练习八第1~4题。

教学目的:

使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

教学过程:

一、复习

1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

9/9

2、口算下面各题。

6/7÷2

提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

3、解答应用题。

一辆汽车

提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)

指定一名学生列式解答。

二、新课

揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

1、出示例题。

一辆汽车小时行驶18千米,1小时行驶多少千米?

提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

指名列出算式,教师板书:18÷。

2、教学整数除以分数的计算方法。

教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

提问:“因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

提问:要求

提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)

提问:怎样求出小时行驶多少千米?(启发学生说出小时里有

提问:

提问:现在已经求出小时行驶的千米数,怎样求出然后教师在“18”后面再写“5”。

提问:想一想,根据乘法结合律,教师板书:=185=18。

提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

写出答案“答:汽车1小时行驶45千米。”

3、引导学生小结。

“整数除以分数,等于整数乘上除数的倒数。”

三、看教科书中新课内容后试算

全体学生独立计算“做一做”中的练习题:

12÷ 24÷

集体订正计算过程及结果,并提问一个数除以分数的法则。

四、课堂练习

在练习本上计算练习八第1、2题,然后订正计算结果。

五、总结

今天学习了什么新知识?

整数除以分数的计算法则是什么?

计算整数除以分数应注意什么?

六、布置作业

1、阅读教科书第28~29页的内容。

4题。

分数除法课件【篇2】

一、说教材:

1、教材的地位和作用:

这部分内容属于“数与代数”中这一领域,是在学过分数乘法应用题、分数除法的意义和计算法则的基础上进行教学的,为学习分数混合运算奠定基础。

2、学情分析:

五年级的学生对分数有一定的理解,掌握了分数乘法、除法的意义和计算法则,认识了倒数,能运用等式的性质解简单的方程。

3、教学目标:

(1)能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

(2)在解方程中,巩固分数除法的计算方法。

(3)通过解决问题切实体会数学与生活的密切联系,懂得学习数学的意义和重要性,激发学生热爱数学的情感,建立学好数学的信心。

4、教学重点和难点:

教学重点:能用方程正确解答分数除法应用题。

教学难点:体会方程是解决实际问题的重要模型。

二、说教法、学法:

美国教育心理学家奥苏贝尔曾说:影响学生学习的重要原因是学生已经知道了什么。

苏霍姆林斯基也说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”

所以我从学生已有的知识和生活经验出发,收集信息、独立思考、发现关系、提出问题,通过合作交流的方式解决问题。提倡解决问题策略的多样化,允许学生表达自己对问题的理解,选择自己最合适的解决方法,变“教师教”为“引导学”。

三、说教学流程:

基于上述分析,我为本节课设计了以下四个基本环节:

引入新课、收集信息——比较发现、得出结论——实践应用、拓展提高——全课小节、达成共识。

(一)引入新课、收集信息:

1、创设情境、引入新课:

法国著名教育家、思想家卢梭说:问题不在于教他各种学问,而在于培养他有爱好学问的兴趣,而且在这种兴趣充分增长起来的时候,教他以研究学问的方法。

兴趣是学习的内动力,为了激发学生的兴趣,课程伊始我先播放一段轻松、欢快歌曲。(播放视频)

在这轻松、和谐的氛围里,孩子们愿意把他们喜欢的课间活动讲给我听?

2、收集信息、提出问题:

随即出示教材中的情境图,从学生感兴趣的活动场景引入,获取基本的数学信息,提出有价值的数学问题,并试着解决。

信息:图上有(20)人参加活动;跳绳的有(6)人;

踢毽子的有(3)人;打篮球的有(4)人;

跑步的有(3)人;踢足球的有(4)人。

问题:跑步的人数是踢球的几分之几?

踢毽子的是跳绳的几分之几?

(二)比较发现、得出结论:

1、引导发现问题:

教师设疑,引导学生发现问题,操场上是有20人在活动吗?学生一定会发现这幅图只呈现了操场的一部分,显然答案20人是错误的。

请同学猜一猜操场上一共有多少人。学生沉思片刻后会汇报许多数据。

教师进一步引导:究竟谁的答案是正确的呢?想不想验证一下?

2、给出解决问题的关键条件:

跳绳的小朋友是操场上参加活动总人数的 ,

3、用自己喜欢的方法解决,在小组中交流并汇报。

学生在试做的过程中会出现以下几种情况:借助线段图用除法计算、数份数的方法、分析数量关系、列方程解。无论是哪种方法,教师都应该给予肯定与鼓励。

让学生在交流中感受不同方法的思维特点,由学习者成为研究者,体验成功的快乐。再引导学生进行系统的分析,找出解决问题最简便的方法。

在比较过程中,学生一定也许会说:前两种方法书写少、计算快、用起来顺手也很简便呀!教师不要立即否定,扼杀孩子们的思考意识;也不要为了完成教学任务急于往下进行。

这时教师可以引导:其实我也很欣赏你的方法,谁能把你认为简便的方法的思路说给我们听?

通过讨论的平台,让大家发现用方程解决就是旧知识的综合运用,属于顺向思维,虽然写起来麻烦,但思考起来会更加容易。

最终得出结论:用方程解决分数除法的实际问题比较简便。

4、巩固练习、深入理解:

为了巩固这种方法,我把教材中的试一试,设计成两个板块:一是口答,二是笔练。这样不仅提高了学生的计算速度,也有助于学生掌握本节的重点。

口答:说出他们的数量关系:

①打篮球的人数是踢足球人数的4/9

②踢毽子的人数是踢足球人数的1/3

③某双休日共有9天,是这个月总天数的3/10

笔练:通过上述数量关系直接列出方程,并解答。

I、操场上打篮球的有4人。

(1)打篮球的人数是踢足球人数的4/9,踢足球的有多少人?

(2)踢毽子的人数是踢足球人数的1/3,踢毽子的有多少人?

II、某双休日共有9天,是这个月总天数的3/10,这个月

有多少天?

(三)实践应用,拓展提高。

练习内容由三个部分组成,即:基本练习、对比练习、拓展练习。

为了实现教学目标,我们从生活中寻找素材,引入课堂,让学生认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,增强学生的应用意识,切实体会数学与生活的密切联系。

如:第一题我先播放一段视频,让学生弄清什么是打折,及八折的意思,再进行解答。

后面的两道题也与我们的生活息息相关。

一、基本练习:解方程:

х/5=7 3х/4=4 5х/8= 8х=4/7 2х3=6 3х/8=1

二、对比练习:

1、操场上有27人参加活动,踢足球的人数占总人数的 ,踢足球的有多少人?

2、操场上有9人在踢足球,占参加活动总人数的 ,操场上一共有多少人?

三、拓展练习:

1、原价是多少元?

生活中我们经常会遇到商场内物品打折的情况,你知道

打折是什么意思吗?

通过课前收集生活中的图片信息,让学生弄清八折的意思,再进行解答。

2、李健的身高是150厘米。

(1)李健的身高是妈妈身高的5/16,妈妈的身高是多少厘米?

(2)妈妈的身高是爸爸身高的8/9,爸爸的身高是多少厘米?3、鸡、鹅的孵化期分别是多少天?

鸭的孵化期是28天;

鸡的孵化期是鸭的3/4;

鸭的孵化期是鹅的14/15;

(四)全课小节,让学生谈一谈在本节课里的收获,总结在学习中的不足。

分数除法课件【篇3】

一、指导思想

数学教学,要让学生在一种积极思维状态下,亲身经历数学知识形成过程,也就是经历一个丰富、生动思维过程,使学生通过尝试活动,掌握基本数学知识和技能,激发学生对数学学习兴趣。因此,在教学中我始终以学生发展为立足点,以自我尝试、讨论探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学过程中,使学生观察、操作、口头表达等能力得以培养,使学生创新意识得以开发与增强。

二、教材分析

《分数与除法》是人教版义务教育课程标准实验教科书五年级下册第四单元第二课时内容。本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商,这样可以加深和扩展学生对分数意义理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。

三、教学目标

根据对教材分析和学生实际,依据数学课程标准理念结合教材自身特点和学生认知规律,我确定教学目标如下:

(1)知识目标:

理解和掌握分数与除法关系。

(2)能力目标:

通过动手操作,在学生充分感知基础上,理解并形成分数与除法关系。培养学生实践、观察及创新能力,促进思维发展。通过同学间合作,进而促进学生倾听、质疑等良好学习惯养成

(3)情感与态度目标:

结合学生认知规律,激发学生求知欲望,在具体探究过程中培养学生数学素养以及培养学生自我探索意识和创新精神。

3、教学重点

经历探究过程,理解和掌握分数与除法关系。

4、教学难点

理解用分数可以表示两个数相除商

四、说教法、学法

学生认识事物是由易到难,由浅入深循序渐进,由“感性认识上升到理性认识”认知规律,学生虽然知道了分数意义,但要使学生真正理解分数与除法关系,必须遵循他们认知规律。因此,本节课采取教学方法是尝试教学法,利用学具让学生在具体情境中大胆尝试,通过动手操作,观察发现,引导归纳出分数与除法关系。学生学法与教师教法是一个有机整体所以尝试探究、动手操作、发现问题、整理归纳贯穿于整节课。

总之,力途为学生营造一个宽松、民主学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们在积极数学思维状态下,真正感受到“我能行”。

五、说教学程序

针对以上思想,我说一下教学流程中每一步设计意图:

(一)、复习导入 点明课题

因为本节课是在分数意义基础上进行,所以让学生加深对分数意义理解,明确本节课要干什么。开门见山出示课题。

(二)、 探究新知

1、唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法意义顺势引导1张饼平均分成2份、3份、4份怎样列式,然后多媒体给学生以直观形象演示,让学生理解分数可以写成除法。给学生以表象认识。

2、尝试探究,

首先提出问题:3张饼平均分给4个人,每人分几张?然后让学生利用学具动手操作分一分,讨论交流,并让学生展示分过程,把课堂还给学生。同时根据学生汇报多媒体展示分过程。使学生明确三张四分之一就是一张四分之三,所以每人分四分之三张。

这时,当学生对知识理解由感性上升到理性,所以马上进行补充事实,举一反三

2张饼平均分给4个人,每人分几张?3张饼平均分给5个人,每人分几张?这样学生就比较容易迁移知识,得出2/4与3/5.

3、归纳概括

通过以上动手尝试探究,学生经历了知识形成过程,所以放手让学生观察发现分数与除法有什么关系,得出结论。同时使学生初步知道两个整数相除,只要除数不为0,不论能否除尽,都可以用分数来表示商。

(三)尝试练习

接着,就是学生进入当堂练习中,设计有层次、题型多样练习,及时巩固新知,达到当堂学,当堂清效果。使学生更进一步理解本节课所学内容。

六、说教学反思

本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。

从总体来看,本节课学生能在具体情境中动手操作,大胆尝试,兴趣比较浓厚,而且学生动手分情况也比较好,也能大胆展示,基本上掌握了分数与除法关系。使我感受到数学动手操作是课堂教学一个重要途经。但还存在许多细节问题:

1. 在课堂结构安排上有点前松后紧。

2. 学生展示分过程时没有点到位,有点乱,不太突出。

3. 总结归纳时没有充分放手学生,而且比较急匆匆而过。

4. 学生语言表达能力比较欠缺。

在以后教学过程中要尽量克服这些困难,提高自己课堂教学质量

分数除法课件【篇4】

我今天说课的内容是分数与除法中的第一课时。我将就“教学内容和教学要求、教学目的、重点、难点的确定、教学方法的选择、教学过程的设计”等四方面进行说明。

(一)、关于教学内容和教学要求的认识

“分数与除法的关系”这一教学内容,是小学教学第十册第四单元中第一小节的授课内容,这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。本节课承接了分数的意义等知识,又为今后学习单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

(二)、关于教学目的、重点、难点的确定

根据对教学内容和教学要求的认识,针对学生的学习水平,我确定本节课的教学目标如下:

1、知识目标:理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。在教学进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

(三)、教学方法的选择

贯彻“以学生为主体,教师为主导,训练思维为主线”的原则。

1、自主探究、寻求方法

让学生充分自主探究、寻求分数除法的解题方法。

2、设计教法体现主体

课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。

3、分层练习、注重发展

练习有层次,由尝试练习到综合练习到发展练习,层层深入。

(四)、教学过程的设计

一、激情引入,自主建构。

这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。

(1)(课件展示)

1)6块月饼分给3人,每人分多少块?

2)1块月饼分给2人,每人分多少块?

3)1块月饼分给3人,每人分多少块?

(2)问一问他们怎样计算每人分得的块数?

(3)当他们发现不能得到整数的商时,引导他们讨论应该怎样表示他的结果。

从而板书课题——分数与除法。

(4)介绍分数表示除法的商的由来。

二、在目标的递进中,获得积极的数学学习情感。

这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。

(1)出示例1:例1:把1个蛋糕平均分给3人,每人分得多少个?

1)生讨论

1在讨论过程中,启发学生用一个数表示

2在小组中说一说,你是怎么想的。

2)生汇报讨论结果

生1:从图上我可以知道每人分得这块蛋糕的

生2:求每人分得多少个,要算1÷3得多少?

师:1÷3得多少呢?

(2)出示例2:把3块饼平均分给4个孩子,每人平均分得多少块?

——首先请他们估算一下每个人应分得多少块?

参考答案:

A、半块B、半块多c、一块

——其次,小组合作动手操作。

——最后展示分法

(3)列出完整的算式,并用分数来表示具体的结果。

(4)在教授完例1和例2后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。那么教学设计为请他们观察黑板上的算式和结果,猜测分数与除法之间有什么关系,根据学生不同的认知情况,安排模仿练习,感性体验数学活动。

把1米长的钢管平均分成3份,每份长多少米?

体会当得不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得出术,在总结完各部分关系与分母公式后,请他们推理一下,除法理由具体要求吗?(除数不能为零)那分数有没有要求呢?说一说理由,教师板书b≠0,引导进行验证从分母所表示的意义说明没有意义。

三、掌握知识技能,实现数学思想的深入。

结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。

练习设计主要分为以下几个层次:

①强化分数与除法的关系:

4÷5=5÷12=7÷8=

让学生叙述一下你观察到了什么?发展学生的口头表达能力。然学生想一想,你都可以知道什么?发展学生的空间想象观念训练知识的迁移能力。怎样解答?进一步巩固所学的知识。

②用分数表示商的意义的总体认识。

单位换算:9cm=()dm3cm=()m7dm=()m

11秒=()分5分=()时8时=()天

四、画龙点睛,留下个性发展的空间。

课程的最后以学习目标进行提纲式小结,便于学生形成知识的网络,再次重申本节的重点和难点,培养学生质疑问难的好习惯教师引导思考练习一中每段的长度都不一样,要将分数与除法之间的关系从认识上、意义上、联系上进行一次升华。给学生一个完整的认识,为今后的继续学习留下个性发展的空间,释放无穷的潜能。

五、板书设计。

第一部分为新授例题。

第二部分为总结的分数与除法的关系知识。

第三部分为分层次的发展思维。

这样设计的目的再现了知识产生和发展的过程,体现了一切事物发展的本质特点,更重要的是渗透给学生,从实践中上升为理论,又用于指导新的实践,在实践中检验理论的真实性,从而树立从小爱科学的唯物主义世界观。

分数除法课件【篇5】

一、说教材

这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法解决问题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的解决问题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的解决问题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的解决问题。这类解决问题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法解决问题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类解决问题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数解决问题的能力,也有助于发展学生思维的广度。

二、说教学目标和教学重、难点

(一)教学目标

1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法解决问题,并掌握检验的方法。

2、能力目标:培养学生的观察尝试、创新的能力。

3、情感目标:让学生通过两种方法解答解决问题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。

(二)教学重点

用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法解决问题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的解决问题。掌握这类解决问题的结构特征,能用方程和算术方法解决,是难点所在。

三、说教法、学法。

为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。

四、说教学过程

(一)引出新知

第一个环节:复习旧知,促进迁移

该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:

1、解方程

2、出示与例题有关的分数乘法解决问题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?

第二个环节:创设情境,探究新知

对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:

第一层次:独立探索

出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。

第二层次:合作探索

在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?

在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。

第三层次:尝试练习

让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。

第三个环节:变式练习,巩固深化

练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:

1、定位练习。

仿照例3出示类似的两道解决问题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。

2、提高题:同来互相编题,互相解答。

通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。

第四个环节 课堂作业 反馈信息

完成课本练习二十三第4-7题

(三)说“诱思探究”在本节课的具体体现

1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。

2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。

教学追记:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。

分数除法课件【篇6】

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套五年级下册《分数除法》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

教学内容(课题):倒数

教学目标和要求:

1、在计算、比较、观察,发现倒数的特征并理解倒数的意义。

2、掌握求一个数的倒数的方法。

教学重点:

会求一个数的倒数。

教学难点

理解“倒数”是不能孤立存在的。

教学准备:

教学时数:1课时

教学过程:

一、教学过程

师:请同学们结合语文的学习,猜几个字,中国的汉字结构优美,有上下结构,左右结构,假如把“杏”上下颠倒,变成什么字了?(呆)把“吴”字颠倒呢?(吞) 那数是不是也有这样的特性呢?

师:事实上,一个数也可以倒过来变成另一个数,比方3/4倒过来变成了4/3,1/7倒过来变成7/1。

师:你能根据它的特性给它起个名字吗?(倒数)今天我们就一起来研究倒数。(板书课题:倒数)

师:请同学们打开教材第24页,在书上完成“算一算”,并认真观察考虑,看你有什么发现。

组织同学交流自身的发现,引导同学总结几组算式的一起特点(乘积都是1),以和算式左边的两个乘数的关系(分子和分母互相颠倒),从而引出倒数的概念。

师:你怎样描述上面算式中两个乘数的关系呢?(根据同学的回答,教师板书)

乘积是1乘积是1

2/3*3/2=12*1/2=1

8/11*11/8=11/10*10=1`

7/9*9/7=17*1/7=1

6/5*5/6=11/5*5=1

分子和分母颠倒分子和分母颠倒

师:乘积是1的两个数互为倒数。你能说出黑板上谁和谁互为倒数吗?还能举出其他例子来吗?(同学举例,教师板书:2/3和3/2互为倒数 )

师:你们是怎么理解“互为”这两个字的?能否举出生活中的例子?(同学举例,如互为朋友是指互相是朋友 )

二、试一试

主要是让同学理解整数可以看作是分母为1的分数,1的倒数还是1。

三、想一想

教师借助分数中分母不能为0,说明0没有倒数。

四、练一练

同学独立完成P24。

分数除法课件【篇7】

一.说教材。

我说课内容是人教版课程标准实验教科书六年级上册分数除法单元中例1和例2。例1是分数除法意义认识,例2是分数除以整数计算。在这之前学生已经掌握了整数除法意义和分数乘法意义及计算,而本课学习将为统一分数除法计算法则打下基础。

例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法意义与整数除法意义相同,都是已知两个因数积和其中一个因数,求另一个因数运算。例2是分数除以整数计算教学,意在通过让学生进行折纸实验、验证,引导学生将图和式进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合思想方法。

根据刚才对教材理解,本节课教学目标是:

1.理解分数除法意义与整数除法意义相同。

2.理解分数除以整数计算原理,掌握计算方法,并能正确进行计算。

3.经历观察、猜测、实验、验证和归纳过程,感受数形结合思想方法,并从中发展抽象思维能力。

本课重点是理解分数除法意义和分数除以整数计算方法;

本课难点是分数除法一般算法理解。这是因为要将除以一个数转化为乘以它倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维定势,一时不容易接受。所以本课关键是如何引导学生在实验和验证中自主体验和感悟。

二.说教法、学法。

为了达成教学目标,本课教学必须贯彻以学生为主体,坚持启发与发现法相结合教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。

学习方法上强调以探究学习法为主。认知结构理论告诉我们,学习是学生积极主动内化过程。只有通过主动参与获得知识,才是有意义。因此,在重难点学习上,通过折纸实验与验证,数形结合,从而实现真正理解。

三.说教学过程。

(一)类比迁移,理解分数除法意义。

1.乘法意义对照。

(出示3盒标注100克水果糖)问:共重多少千克?

这个问题提法比教材中略有不同。教材中是先提问:共重多少克?借此引出整数乘法、整数除法算式,然后通过100克=1/10千克引出相应分数乘除法。根据我以往教学经验,这样处理不少学生在类比迁移时有一定障碍,并不容易实现。

而在问题中直接以千克为单位,首先因为问题更有挑战性而能更有效激发学生兴趣,其次还能引出三种形式算式:

○1整数形式:1003=300(克)=0.3(千克)

○2小数形式:100克=0.1千克 ;0.13=0.3(千克)

○3分数形式: 100克=1/10千克 ;1/103=3/10(千克)

这样处理不仅有利于学生系统建构整个乘法意义,而且,还能促使学生自然而然把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去理解就显得水到渠成啦。

2.除法意义对照。

在改编成求每盒重多少千克问题情境下,引出相应三个除法算式:

○13003=100(克)=0.1(千克)

○20.33=0.1(千克)

○33/103=1/10(千克)

并进一步引导学生进行比较,从而理解分数除法意义与整数、小数除法意义相同。

3.练习:

1217= 204 2.81.5= 4.2 2/34=8/3

20412=( ) 4.21.5=( ) 8/34=( )

20417=( ) 4.22.8=( ) 8/32/3=( )

在前两步理解意义基础上,及时安排相应巩固练习。分别是已知三种形式乘法算式,不计算直接写出相应除法算式商。如:2/34=8/3,8/34=( ),8/32/3=( )

(二)自主探究,掌握算法。

第一步:教学4/52

1.创设问题情境:没有已知乘法算式,你还会计算4/52这道分数除法吗?

○1鼓励尝试计算;

○2组织全班交流;

(预设学生反馈):

方法A.因为22/5=4/5,所以4/52=2/5

这是受刚才所学除法意义影响,迁移而来;

方法B.4/52= 42/5=2/5

大部分是看到4与2倍数关系,想当然在计算;可能小部分能从数组成进行解释。

方法C.4/52=4/51/2=2/5

课前预习过;但能说清为什么恐怕很少。

2.引导理解方法B和C。

○1师:4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();

○2师:在长方形里折一折,涂一涂,再来解释两种方法。

○3师:还有不同分法吗?

在先请学生进行解释基础上,引导思考: 4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();在部分学生有所感悟基础上,引导学生进一步验证,根据课前提供五等分长方形纸片,要求学生折一折、涂一涂,再来进行解释。

由于已经将长方形纵向五等分,因此从直观上很容易理解方法B。再进一步启发:还有不同折法吗?鼓励学生寻求不同方法,比如说横向折,沿对角线折等等;

通过这些折法体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它12,也就是说始终可以将2转化为乘以1/2。

第二步:教学4/53

1.初步比较:你觉得哪种方法好?

2.尝试计算4/53;

(要求先折一折,涂一涂,再计算) (课前提供五等分长方形纸片)

反馈,追问:

○1 平均分成3份,每份是( )1/3? 求一个数几分之几怎么计算?

○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?

首先请学生对两种方法进行初步比较:你觉得哪种方法好?这时并不急于统一思想,转而请学生计算4/53。也要求根据课前提供五等分长方形纸片先折一折,涂一涂,再计算。

然后进行反馈,并引导思考:

○1 平均分成3份,每份是4/5(1)/(3)? 求一个数几分之几怎么计算?

○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?

此时通过对比和思考,应该说对方法C已经有了较为深刻认识。

建构主义理论认为:学习不是学生被动接受老师授予知识,也不是知识简单积累,它是学习者认知结构组织和重组,是学生主动建构知识意义过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/53求解过程,使学生自觉在心里进行了比较,也就是主动开始建构认识,这时理解是较为深刻理解。

第三步:实验与验证

1.师:其它这样分数除法计算是不是也和刚才两题一样呢?

在理解例题基础上,抛出一个疑问:其它这样分数除以整数计算是不是也能将除数转化为乘以它倒数呢?从学生思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证动机。然后根据课前提供空白长方形纸条组织学生开展研究,并组织开展同伴间交流。

现代认知理论认为:感知只有经过一般化检验,才能上升成为知识。开展实验与验证符合从特殊到一般需要,而且还是学生主动、内在需要,这无论是对理解掌握算法、还是对培养良好数学思维习惯,都有积极意义。

2.反馈交流。

归纳:(一般化计算方法)用符号表示: AB=A1/B

观察: (形式上看)什么变了,什么没变?

最后,组织进行反馈,得出最后结论,并引导学生将一般化计算方法用符号化表示。这里不仅是为了培养学生符号意识,包括之后引导学生观察,(形式上看)什么变了,什么没变?其目在于培养学生概括能力,促进更好理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识客观性及其本质更为深刻理解,从而形成科学态度和严谨思维。

分数除法课件【篇8】

一、 教材分析

(一)教材地位和作用

圆是常见的几何图形之一,不仅在日常生活中被广泛应用,在几何中也占有重要的地位,而且是进一步学习数学以及其他学科的重要基础。本节讲的是圆与圆的五种位置关系,

(二)教学目标

知识与技能

(1)了解圆与圆的五种位置关系,掌握运用圆心的距离的数量关系或用圆与圆交点个数来确定圆与圆的五种位置关系的方法。

(2)了解切线、割线的概念。

过程与方法

通过生活中的实际事例,探索圆与圆的五种位置关系

情感态度与价值观

学生通过操作,实验,发现,确认等数学活动,从探索圆与圆的位置关系中,体会运动变化的观点,量变到质变的辨证唯物主义的观点,感受数学中的美感

(三)重点、难点

重点:利用数量关系揭示圆与圆的位置关系

难点:利用圆与圆位置关系解决实际问题

二、 教法学法

教法的设计 情境创设 设疑启发 引导交流 探索创新

学法的设计 观察猜想 自主探究 合作交流 归纳创新

三、教与学互动设计

1、情境引入

本节课我是这样导入的,首先出示四幅图片。【同学们你们观察这些图片,找一找其中的圆有哪些位置关系,请用自己的语言表达出来。】

同学们会各抒己见,老师不要过早的下结论,而是让同学们在下一环节继续探究。

2、合作探究

在这一环节我让同学们拿出事先做好的圆,让他们小组合作探究圆和圆之间到底有几种位置关系。

老师巡回指导

3、得出结论

【为了让同学们更深刻的理解掌握圆与圆的五种位置关系,教师演示课件。学生观看并总结结论。圆与圆之间有五种位置关系:相离外切相交内切 内含】

为了让同学们更加深刻的理解圆与圆的五种位置关系,在这里我又引导同学们从焦点个数对两圆位置关系进行分类。

为了让同学们理解圆心之间的距离在五中位置关系中和两圆半径之间有怎样的数量关系我在这里设计了五种动画课件,教师演示让同学们进行归纳。

4、巩固新知

为了巩固以上知识,我在这里设计了三个简单的练习题,只是简单的应用五种位置关系中圆心和半径之间的数量关系。

为了提高同学的能力,只是简单应用还不够,于是我又设计了例题。因为例题有难度所以需要师生共同完成。

5、综合拓展

为了巩固以上学习的内容我在这里设计一个练习题,希望同学们能够独立完成。

为了提高同学们学习数学的兴趣我在这里设计了一个环节,争当小小设计师。这一环节既能提高同学们学习数学的兴趣又能提高同学们的能力。同时还能活跃课堂气氛,让同学们体会到生活中处处有数学,数学就来源于生活,同时课堂变的丰富多彩让同学们能够学着乐乐着学。

6、布置作业

最后一个环节是布置作业,我的说课到此就结束了

推荐阅读

上一篇:高一历史学期工作总结集合 下一篇:机械实习周记(范本七篇)
back_img
推荐标签