【#实用文# #等式的性质课件汇总#】一般给学生们上课之前,老师会提前准备好教案和课件,这就需要老师自己花点时间去编写。新老师要认真对待教案和课件,因为这对于课堂活跃非常有帮助。那么怎样的教案和课件才算是优秀的呢?下面是好工具范文网编辑整理的“等式的性质课件”,希望你能从中学到很多有用的知识!
等式的性质课件(篇1)
各位老师:
很高兴有这次机会和大家一起学习交流。今天,我说课的题目是《等式的性质》的教学内容。我将从以下几个方面进行我的教学思路说明。
一、教材分析
本节课的主要内容是等式的基本性质以及运用等式的.基本性质解简单的一元一次方程。本课是在同学们学习了一元一次方程的概念后的授课内容。等式的基本性质是解方程的理论支撑,它为下节的学习铺平了道路。因此本节课内容起到了承上启下的作用。
二、教学目标。
(1)知识与技能:探究等式的性质,并能利用等式的性质进解简单的一元一次方程。
(2)过程与方法:通过观察探究培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:培养学生参与数学活动的积极性、自信心.
三、教学重、难点
教学重点:掌握等式的性质,根据等式性质解简单的一元一次方程。教学难点:由具体实例抽象出等式的性质,正确理解等式性质2中除数不能为0。
四、优缺点:
优点:在教学过程中我重视学生学习知识的生成规律,通过直观引导学生发现抽象的规律。重视数学思想和方法对的渗透,本节课运用到的数学方法有:从特殊到一般、类比、转化、化归等思想方法。
缺点:青少年学生都希望受到老师的表扬,有表现自我的机会,所以在教学中应抓住学生这一生理特点,用适当的语言能激发学生参与课堂的积极性。今后我需要在课堂用语上多下一些功夫。
五、课堂重建
在探究等式性质2的除法情况时,我运用的是在直观得出乘法的规律后,把乘法转化为除法来探究得出除法的规律,下次我会尝试采用利用天平直观演示得出这一规律。数学教学要给学生留出大量的习题训练时间,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质课件(篇2)
一、说教材分析
地位和作用:
教材从对于比较复杂的方程难以用估算求解切入,引出对等式性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法进行铺垫。学生探究等式的性质过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。
教学目标:
(1)知识与能力:理解并能用语言表述等式的性质,能用等式的性质解决问题。
(2)过程与方法:通过观察实验培养学生探索能力、观察能力、概括能力和应用新知的能力,渗透“化归”的思想。
(3)情感与态度:通过实验操作增强师生合作交流的意识。
教学重点:
引导学生探索发现等式的性质,利用等式的性质解决简单问题。
教学难点:
抽象归纳出等式的性质。
教学准备:
天平、导学案及多媒体课件
二、说教学策略与方法分析
有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式,这也是生本课堂“三学小组”教学模式积极倡导的重要学习方式。在本节课的教学中,我利用学生动手操作、多媒体展示,通过观察法、实验法、合作交流、归纳法等教学方法,引导学生预学——互学——评学,遵循由浅入深,由具体到抽象的规律,努力为学生营造一个宽松、民主、和谐的学习环境,让学生们在探索、交流中理解和运用等式的基本性质;
三、说教学流程及设计意图
(一)独立自学
预学:请同学们认真看教材81页第一、二两段内容,结合所学知识回答下列问题;
1、我们把的等式叫方程;用“ ”表示关系的式子叫做等式,可以用表示一般的等式;请举几个等式的例子;
2、能说出方程4x=24,x+1=3的解吗?试一试;
3、79页例1第(2)题我们所列的方程是:能估算出这道方程的解,从而解答这个问题吗?
设计意图:1、2两个问题都来源于教材,比较简单,学生容易解决。第3个问题让学生会感到解决起来有一定的困难,学生对后面即将学习的知识必然引起重视,同时也产生了学好新知再来解决困难的浓厚兴趣,就此引入本节课的课题;
(二)合作互学
动手操作,探究规律:把手中的天平调到平衡状态,在天平两端放置不同的物品,什么时候天平可以平衡?(平衡状态下的天平可以用等式表示)如果在平衡的天平的左端放入一个砝码,天平还平衡吗?怎样做天平才能平衡呢?如果把放入左边的砝码拿掉,又有什么发现呢?
1、通过观察,可以发现什么规律?
规律:
2、归纳:
等式的性质1
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
【继续探究】:如果在平衡的天平的左端放入与左端一样的砝码若干个,怎样才能使天平平衡呢?如果把放入天平左端的砝码拿掉,又有什么发现呢?
1、发现的规律是:
2、类比等式的性质1,可以归纳:
等式的性质2
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
3、【知识延伸】等式除了以上两条性质外,还有其他的一些性质。
(1)对称性:等式的左、右两边交换位置,所得的结果仍是等式。即如果a=b, a=b那么b=a 。
(2)传递性:如果a=b,且b=c,那么a=c。
设计意图:我设计了探究天平平衡规律实验的教学环节,让学生以小组合作的形式讨论实验步骤并动手操作,在增减重物的过程中认识、归纳天平的平衡规律,让学生汇报实验步骤与结论,并用数字等式的形式表现实验结果,进而共同归纳出等式的性质1.在探究等式的性质2时,我为了加深学生印象,同时也为了培养学生数学思维的发展,提出问题:如果将性质1中的“加”改为“乘”、“减”改为“除以”,结果还会相等吗?让学生大胆猜想,并通过天平实验和数字等式实例变形进行验证,再得出等式的性质2.按照这样的设计,学生必然会充分地参与到探究等式性质的活动中来,既培养了学生团结协作、动手操作、勇于实践的探索精神,又增强了设计实验、类比猜想、归纳建模的学习能力,同时获得的知识也必然印象更深。
(三)展示竞学
1、若X=Y,则下列等式是否成立,若成立,请指明依据等式的哪条性质?若不成立,请说明理由?
(1)X+ 5=Y+ 5(2)X-= Y-
2、如果3x=2x+5,那么3x+______=5;根据等式性质
变式1、如果a-3=b-2,那么a+1=_________;根据等式性质
变式2、从3x+2=3y+2中,能不能得到x=y,依据是什么?
设计意图:这几道练习题主要是等式两条性质的基本运用,练习题的设计我遵循了“低起点,小台阶,循序渐进”的要求,符合七年级学生接受知识的年龄特点,培养了学生运用所学新知解决问题的习惯,使学生能享受到运用新知可以解决新的数学问题的愉悦感。
(四)精讲导学
精讲例题:阅读理解题:下面是小明将等式3x-2=2x-2变形的过程。
设计意图:通过精讲展示竞学部分学生可能有疑惑或解决不了的问题,让学生加深理解等式两条性质运用的条件,设计的变式训练由易到难,目的是巩固基础、提高能力;另外还有一个阅读理解题,目的是让学生在发现错误,并纠正错误的过程中,可以提醒自己在运用时不要犯这样的错误,并加深对等式的两条性质的理解;
(五)小结评学
设计意图:我设计了两个问题:一是你在本节课上有哪些收获?二是你还有哪些疑惑?主要是鼓励学生能畅所欲言,使知识得到深化,能力得到提高;同时通过对学生个人的评价和学习小组的评价,有利于培养学生上课认真听讲,积极思考回答问题,以及荣誉感意识,增强学习数学的自信心;
最后,关注学生的学习体会和感受,提出:通过本节课你学到了什么?
(六)检测固学
1、下列等式的变形中,不正确的是()。
A.若x=y,则x+5=y+5
B.若(a≠0),则x=y
C.若-3x=-3y,则x=y
D.若mx=my,则x=y
2、若,则a=___;若(c2+1)x=2(c2+1),则x=____。
3、填空,使所得结果仍是等式,并说明结果是根据等式的哪一条性质及如何变形得到的?
(1)若2x-4=5,则2x=5+,根据等式的性质
(2)若4x=3x-6,则4x+ =-6,根据等式的性质
(3)如果x=5,那么x=________;根据等式性质
(4)如果0.5m=2n,那么n=_______;根据等式性质
(5)如果-2x=6,那么x=________.根据等式性质
4、若b=3a+6,c=3,且b=c求a的值;
变式:若b=3a+6, c=a,且b=c求a的值;
设计意图:
通过典型,多样化的练习题,尤其是“变式练习”进一步强化技能,提高能力,加深对等式的两条性质的理解和运用;
等式的性质课件(篇3)
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
等式的性质课件(篇4)
一、说教材
(一)教材地位及作用
《不等式的性质》节选自普通高中课程标准实验教科书必修五B版第三章第一节第二部分的内容,本节课的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质。这部分内容是不等式变形、化简、证明的理论依据和基础。教材通过具体实例,让学生感受现实生活中存在大量的不等关系,在不等式与实数运算的关系基础上,系统归纳和论证了不等式的一系列性质。因此本节课在高中数学中具有举足轻重的作用。
(二)教学目标
知识与技能目标:理解不等关系与不等式的联系,会用不等式表示不等关系。
过程与方法目标:通过具体情境,学生感受现实世界和日常生活中存在着大量的不等关系;在探究的过程中,掌握比较两个实数大小的方法。
情感态度与价值观目标:体验数学知识在生活中的应用,激发学生探究的兴趣和学习热情。
(三)教学重难点
依据以上对教材内容及教学目标的分析,本节课的教学重点为掌握不等式的性质。教学难点为不等式性质的证明。
二、说学情
学生已经会借助数轴来比较两个实数的大小,能理解等式性质,知道等式性质是解方程的依据。在初中时曾经接触过三个关于不等式的结论:“不等式的两边同时加上(或减去)同一个数,不等号方向不变”;“不等式的两边同时乘以(或同除以)同一个正数,不等号方向不变”;“不等式的两边同时乘以(或同除以)同一个负数,不等号方向改变”。同时,学生已具有一定的观察能力、抽象概括能力和合情推理能力。学生对不等式的性质的理解相对来说比较容易,但是对它们进行证明,却比较困难。因此在教学中我会采取适当的方法予以指导。
三、说教法
根据本节课的教学目标,我主要采用类比——探究的教法,同时全程贯穿合作交流,通过这样的教法来提高学生的分析、类比能力。
四、说学法
学生在合作探究证明的过程中,增强团队协作的意识,掌握不等式证明的方法,提高学生推理证明的能力。
五、说教学程序
为了更好地帮助学生搭建生活与教材的桥梁,本节课我将通过以下五个教学环节来阐述本节课的教学程序:
(一)创设情境,激趣导入
首先通过几个现实问题创设不等式的情境,如:公路上限速40km/h的路标,指示司机在前方行驶时,应使汽车的速度v不超过40km/h,用不等式表达即为v≤40km/h。通过这样的实例,说明现实世界中,不等关系是十分丰富的,从而激发学生的学习兴趣。
(二)分析探究,合作交流
1.类比-探究
首先,让学生自主阅读课本,以“运算中的不变性”思想为指导,让学生在不等式的加、减、乘、除、乘方、开方运算中,通过类比、猜想、验证、说理等活动,经历一个完整的数学探索过程。进而引导学生类比等式的基本性质,大胆猜想不等式的基本性质,并加以证明。这种在合情推理的基础上,经过严格证明,肯定学生的结论。并根据学生的反馈,给以适当的补充。
2.深入理解
向学生提出问题“定理为什么要证明?证明定理的主要依据或出发点是什么?”通过这样的提问,让学生深入理解证明的重要性。并向学生给以合适的引导,说明不等式性质是贯穿本章内容的一条主线,是证明不等式和解不等式的主要依据。要理解每一条性质的作用,注意性质中的“可逆”与“不可逆”,运用时注意条件的放宽和加强对结论的影响。
(三)巩固提高,加深理解
让学生在理解不等式性质的基础上,巩固练习课本65页的例题,让学生在独立思考证明的过程中,加深对不等式性质的理解。在此过程中,我会下去巡视,提醒学生证明要注意严谨,要有理有据。
(四)综合分析,归纳总结
让学生自主总结本节课的收获,这样设计的目的是让学生加深对本节课重点的理解,同时提高自己的语言表达能力。
(五)布置作业,拓展应用
根据学生对本节课的掌握情况,我布置了必做题和选做题,将课本66页的1、2题作为必做题,将书中没有证明的性质和推论的证明作为选做题。目的是为了让每个学生都能享受成功的喜悦,同时通过选做题,提高学生的证明能力。
六、说板书设计
不等式的性质
1.不等式的性质
2.推论
3.相关证明
这样的板书清晰明了,重点突出,目的是为了更好地帮助学生掌握本节的重点。
等式的性质课件(篇5)
一、教材分析:
“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。该部分知识是学生解方程的依据,它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。教材通过让学生观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质。关注学生由具体实例到一般意义的抽象概括过程,有意识地渗透“等价思想”、“建模思想”。
根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。
本课的数学思考:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程,渗透“等价”、“建模”等数学思想。
情感态度与价值观:鼓励学生积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。
二、学情分析
新课标强调学生是数学学习的主人。学生已经了解了方程的意义而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。
三、教学方法
《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法上采用了观察法、讨论法、归纳法等,让学生通过实验观察和分组讨论探究学习。
四、教学准备
天平、多媒体课件。由于学具有限,所以采用了认识天平和通过多媒体课件展示结果。
五、教学过程
我把教学过程分为以下五个环节:导入新课——引导探究、合作交流——巩固练习、运用新知——课堂小结——板书设计
第一环节:导入新课。引导学生共同列举等式,对等式进行简单回顾,之后观察课件中的天平,用含有字母的等式来表示,由此引出本节课的新知。
第二环节:引导探究、合作交流。
1、猜想、验证。
通过课件展示教材第64页情境图1,先让学生猜想然后再通过课件在天平上演示过程,验证学生的猜想。
第一次猜想验证后引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
2、假设数据、验证规律。
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律:等式两边加上同一个数,左右两边仍然相等。
3、小组合作探究、发现规律。
通过课件展示教材情景图让学生小组合作探究:如果天平的两端同时拿掉1个苹果,结果会怎样?学生汇报后,再次通过课件进行演示。引导学生小结出:等式两边同时减去同一个数,左右两边仍然相等。
4、巩固练习、应用规律
通过一些简单的等式问答,应用等式两边同加或同减相同的数以加强规律的应用。
第四环节:课堂总结,布置作业。
让学生分别谈谈自己的收获,以强化巩固所学知识。课后作业安排为开放的任务:和同组的同学互相写10道利用等式的性质解决的问题,例如:如果x=y,x+8=( )+8。
第五环节:板书设计
在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质。