【#实用文# #函数的课件系列5篇#】在教学实践中,教学工作者经常需要准备教案。编写教案有助于我们准确把握教材的重点和难点,从而选择适当的教学方法。那么问题来了,如何正确地编写教案呢?以下是函数数学教案的范例,供大家参考,希望对有需要的同学有所帮助。
函数的课件 篇1
教学目标
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图象上由自变量的值求出对应的函数的近似值。
教学重点和难点
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。
难点:对已恬图象能读图、识图,从图象解释函数变化关系。
教学过程设计
(一)复习
1.什么叫函数?
2.什么叫平面直角坐标系?
3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?
4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).
5.请在坐标平面内画出A点。
6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)
(二)新课
我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。
这个函数关系中,y与x的函数。
这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。
函数的课件 篇2
一、课前准备:
【自主梳理】
1.任意角
(1)角的概念的推广:
(2)终边相同的角:
2.弧度制:
弧度与角度的换算:
3.弧长公式:扇形的面积公式:
4.任意角的三角函数
(1)任意角的三角函数定义
(2)三角函数在各象限内符号口诀是.
5.三角函数线
【自我检测】
1.度.
2.是第象限角.
3.在上与终边相同的角是.
4.角的终边过点,则.
5.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是.
6.若且则角是第象限角.
二、课堂活动:
【例1】填空题:
(1)若则为第象限角.
(2)已知是第三象限角,则是第象限角。
(3)角的终边与单位圆(圆心在原点,半径为的圆)交于第二象限的点,则。
(4)函数的值域为。
【例2】
(1)已知角的终边经过点且,求的值;
(2)为第二象限角,为其终边上一点,且求的值.
【例3】已知一扇形的中心角是,所在圆的半径是.
(1)若求扇形的弧长及该弧所在的弓形面积;
(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积.
课堂小结
三、课后作业
1.角是第四象限角,则是第象限角.
2.若,则角的终边在第象限.
3.已知角的终边上一点,则.
4.已知圆的周长为,是圆上两点,弧长为,则弧度.
5.若角的终边上有一点则的值为.
6.已知点落在角的终边上,且,则的值为.
7.有下列各式:①②③④,其中为负值的序号为。
8.在平面直角坐标系中,以轴为始边作锐角,它们的终边分别与单位圆相交于两点,已知两点的横坐标分别为,则.
9.若一扇形的周长为,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大值是多少?
的正弦、余弦和正切值.
函数的课件 篇3
㈠课时目标
1.掌握圆的一般式方程及其各系数的几何特征。
2.待定系数法之应用。
㈡问题导学
问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。 -2ax-2by+ =0
问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?
① ;
② 1
③ 0;
④ -2x+4y+4=0
⑤ -2x+4y+5=0;
⑥ -2x+4y+6=0
㈢教学过程
[情景设置]
把圆的标准方程 展开得 -2ax-2by+ =0
可见,任何一个圆的方程都可以写成下面的形式:
+Dx+Ey+F=0 ①
提问:方程表示的曲线是不是圆一个方程表示的曲线是否为圆有标准吗
[探索研究]
将①配方得 : ( ) ②
将方程 ②与圆的标准方程对照.
⑴当 >0时, 方程 ②表示圆心在 (- ),半径为 的圆.
⑵当 =0时,方程①只表示一个点(- ).
⑶当 <0时, 方程①无实数解,因此它不表示任何图形.
结论: 当 >0时, 方程 ①表示一个圆, 方程 ①叫做圆的一般方程.
圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:
⑴ 和 的系数相同,不等于0;
⑵没有xy这样的二次项.
以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件
[知识应用与解题研究]
[例1] 求下列各圆的半径和圆心坐标.
⑴ -6x=0; ⑵ +2by=0(b≠0)
[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。
分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。
[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为 的点的轨迹,求此曲线的方程,并画出曲线。
分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。
反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的'点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。
㈣提炼总结
1.圆的一般方程: +Dx+Ey+F=0 ( >0)。
2.二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件是:A=C≠0且B=0。
3.圆的方程两种形式的选择:与圆心半径有直接关系时用标准式,无直接关系选一般式。
4.两圆的位置关系(相交、相离、相切、内含)。
㈤布置作业
1.直线l过点P(3,0)且与圆 -8x-2y+12=0截得的弦最短,则直线l的方程为:
2.求下列各圆的圆心、半径并画出它们的图形。
⑴ -2x-5=0; ⑵ +2x-4y-4=0
3.经过两圆 +6x-4=0和 +6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程。
函数的课件 篇4
【知识与技能】
1.会用描点法画二次函数y=ax2+bx+c的图象。
2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性。
3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值。
【过程与方法】
1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性。
2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想。
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识。
【教学重点】
①用配方法求y=ax2+bx+c的顶点坐标;
②会用描点法画y=ax2+bx+c的图象并能说出图象的性质。
【教学难点】
能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象。
一、情境导入,初步认识
请同学们完成下列问题。
1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式。
2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标。
3.画y=-2x2+6x-1的图象。
4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象。
5.二次函数y=-2x2+6x-1的.y随x的增减性如何?
【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程。
二、思考探究,获取新知
探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标。
2.列表,描点,连线画出对称轴右边的部分图象。
3.利用对称点,画出对称轴左边的部分图象。
探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
函数的课件 篇5
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
一.教学过程:
1.学生熟练掌握函数的概念和映射的定义;
2.使学生能够根据已知条件求出函数的定义域和值域;
3.使学生掌握函数的三种表示方法。
二.教学内容:1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:
(),yfxxA
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4.区间及写法:
设a、b是两个实数,且a
(1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];
(2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法①解析法②列表法③图像法