【#实用文# #体积和体积单位课件汇编#】就“体积和体积单位课件”而言,我们整理了以下的知识要点供您参考。如需更多相关内容,请关注我们的网站。每位老师在上课前都会准备自己的教案课件,因此他们会详细设计每一份教案课件的重点和难点。教案是针对学生个性差异的重要工具。
体积和体积单位课件 篇1
体积单位间的进率(课本第34—35页内容)。
1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。
2、使学生学会用名数的改写解决一些简单的实际问题。
3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。
1、学习体积单位间的进率。
(1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。 想一想:它的体积是多少立方厘米?
(2)学生读题,理解题意。
(3)老师出示棱长为1dm的正方体模型。
提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)
(4)计算。
请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。
老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3
(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)
(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。
(7)观察板书内容。
想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。
2、体积单位,面积单位,长度单位的比较。
(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。
(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。
单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。
3、学习体积单位名数的改写。
(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)
(2)学习教材第35页的例3。
(2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。
想:( ) cm3=1dm3 (3)学习教材第35页的例4。 出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。 V=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)
【巩固练习】完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。
今天我们学习了哪些内容?你有什么收获?
体积和体积单位课件 篇2
内容 六年级数学(上册)第二单元教学第21~22页的例8,完成随后的“练一练”和练习五5~8题。
求 1、使学生通过观察、操作等活动认识体积单位,初步具有1立方米、1立方分米、1立方厘米的实际大小的观念。
2、发展学生的空间观念。
3、使学生进一步体会图形与生活的联系,感受数学的价值。
及难点 认识体积单位,初步具有1立方米、1立方分米、1立方厘米的实际大小的观念。
及手段 使学生在活动中进一步积累空间与图形的学习经验,增强空间观念。
谈话:上节课我们认识了体积和容积,谁能说一说什么是体积,什么是容积?
(1)出示如例8的长方体和正方体纸盒:
你能说说什么是它们的体积吗?
观察这两个图形,你知道他们哪个的体积大吗?
突出:可一想把它们分割成同样大小的正方体,再进行比较。
小结:为了准确测量或计量体积的大小,要用同样大的正方体作为体积单位。
(2)认识常用的体积单位。
我们已经知道了常用的长度单位、常用的面积单位.你能根据这些推想出有哪些常用的体积单位吗?
根据学生发言,逐次板书:常用体积单位──立方厘米、立方分米、立方米.随板书出示相应的模型.(1立方厘米、1立方分米、立方米)
认识立方厘米、立方分米.
棱长1分米的正方体,体积是1立方分米。
认识立方米。
教师用棱长1米的架子演示1立方米的大小,感受1立方米的空间有多大。
(3)说明:升和毫升也是体积单位。不过它是用来计量液体的体积的。
体积和体积单位课件 篇3
教学目标:
1、掌握体积单位间得进率,理解并掌握低级单位和高级单位的互换,解决一些简单的实际问题。
2、理解并掌握体积高级单位与低级单位间相互转化。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间转化进行计算.
教学重点:
体积的高级单位和低级单位的互换法。
教学难点:
理解相邻单位间的进率是1000的过程。
教学过程:
一、利用小故事,激发兴趣
大象过生日啦!那天来了很多的朋友,有小兔、小猴等等等等,可热闹啦!在众多的朋友中只数小兔最高兴,它乐什么呢?原来它知道了蛋糕的分配方案,认为自己分的蛋糕比小猴的大。蛋糕是这样分配的:分给小兔的蛋糕是棱长10厘米的正方体,分给小猴的蛋糕是棱长1分米的正方体。
然后问,同学们,小兔分的蛋糕真的比小猴的大吗?要知道哪一块大?应该计算它们的什么?
二、实践探究、学习新知
1、问学生能算出这两个正方体的体积吗?算完后,小组交流有什么发现?
学生汇报交流。
因为1分米=10厘米,两个正方体棱长相等,体积也相等。所以这两块蛋糕一样大。
总结知识:
1分米脳1分米脳1分米=1(立方分米)
10厘米脳10厘米脳10厘米=1000(立方厘米)
板书:1立方分米=1000立方厘米
同理:推导立方米与立方分米的关系.
请同学们猜想一下立方米与立方分米之间有什么关系?
用什么方法可以验证你的想法是否正确呢?
2、鈥溙寤ノ患涞慕?鈥?/p>
棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体.
板书:1立方米=1000立方分米
思考:1立方米等于多少立方厘米呢?
3、小结:相邻的两个体积单位间的进率是1000.
4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?
(名称、进率两方面.)
5、巩固练习:
(1)体积单位的互化
8立方米=()立方分米
0.54立方米=()立方分米
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?
想:因为1立方米=1000立方分米,8立方米有8个1000立方分米
列式:10008=8000,填8000
10000.54=540,填540
(2)3400立方厘米、96立方厘米各是多少立方分米?
3400立方厘米=()立方分米
96立方厘米=()立方分米
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理.
想:因为1000立方厘米为1立方分米,3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:34001000=3.4,填3.4
961000=0.096填0.096
(3)教师:通过对比说一说这两道题有什么不同?
高级单位低级单位,用进率高级单位的数.
低级单位高级单位,用低级单位的数进率.
三、提高升华:
一块长方体钢板长2.2米,宽1.5米,厚0.01米.它的体积是多少立方分米?
方法一:2.21.50.01=0.033(立方米)
0.033立方米=33立方分米
方法二:2.2米=22分米1.5米=15分米0.01米=0.1分米
22150.1=33(立方分米)
答:这块钢板的体积是33立方分米.
四、当堂检测.
1、口答填空,说出计算过程.
0.9立方米=()立方分米540立方厘米=()立方分米
38立方分米=()立方米
4立方分米50立方厘米=()立方分米
10.35立方米=()立方米()立方分米
2、判断正误,并说明理由.
0.5立方米=500立方厘米()
2.6立方分米=2立方米60立方厘米()
课堂总结:
通过这节课的学习,你有什么收获?
体积和体积单位课件 篇4
教学目标:
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
重点难点:
体积单位间的进率和单位之间的互化
教学过程:
一、导入
1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。
2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。
3、思考回答:你觉得他的整理如何?有什么需要补充的?如何进行单位间的互化?
4、猜想今天我们学习的相邻体积单位间的进率可能是多少?
二、自主探究、学习新知
(一)探究立方分米与立方厘米间的进率
1、指导学生分组进行探究,
①棱长1分米的正方体的体积是多少?
②棱长10厘米的正方体的体积是多少?
③1立方分米与1000立方厘米,哪个大?为什么?
2、课件提供
①教师提供1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。
②让学生可以观察分析,从而为得出结论提供感官上的支持。
3、交流学习结果,分组汇报
因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米1分米1分米=1立方分米
10厘米10厘米10厘米=1000立方厘米
所以:1立方分米=1000立方厘米
4、让学生在回顾一下思维的过程,再说说自己的理解。
a、一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。
b、1立方分米的正方体,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。
学生讨论:一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。
教师课件演示:1立方分米的教具,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。
(二)独立探究立方米与立方分米之间的进率
1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?
教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)
2、学生自己尝试解决问题
3、交流各自的思维过程
棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米10分米10分米=1000立方分米。
所以1立方米=1000立方分米(板书)
4、小结:相邻的两个体积单位之间的进率是1000。
5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?
三、解决实际问题,巩固所学方法
1、教学例1:3.8立方米是多少立方厘米?
2400立方厘米是多少立方分米?
(1)学生尝试练习,在书上完成。
(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向右移动对应的位数;低级单位的数 改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。
2、完成47页做一做
学生独立作业时。提醒学生要认真审题。请学生说一说相邻两个面积单位的进率是多少。
四、全课总结
今天的学习中你有什么收获?学到了什么?
五、布置课堂作业
完成练习八2题、5题
体积和体积单位课件 篇5
教学内容:第30页的例题11以及练一练和练习七1~4题。
教学目标:
1、使学生认识常用的体积单位,建立1立方厘米、1立方分米、1立方米的表象,知道体积单位和长度、面积单位的不同点,培养学生的观察、归纳、概括和类推的思维能力。
2、进一步培养学生解决实际问题的能力。
教学资源:小正方体若干个
教学过程:
一、创设情境
我们已经学会了计算长方体和正方体的表面积,今天这节课我们一起来研究体积单位。(板书课题)
二、师生探究
1、出示2个正方体
问:下面这两个正方体的体积相等吗?为什么?
学生独立计算。
2、交流汇报
棱长是1分米的正方体它的体积是1立方分米,棱长是10厘米的正方体他的体积是1000立方厘米。
我们发现:棱长1分米的正方体和棱长10厘米的正方体的体积相等。
下面的空你会填吗?
1立方分米=()立方厘米
用同样的方法,你能推算出1立方米等于多少立方分米吗?
1立方米=()立方分米
3、归纳体积单位
立方米、立方分米、立方厘米就是我们常用的体积单位,每相邻两个体积单位间的进率是1000。
三、完成练一练
1、第1题先让学生独立完成,在让学生说说换算的具体方法,注意小数点的位置。
2、完成练习七第1题
先让学生独立填表,再让学生联系填表的过程说说长度、面积和体积单位的联系与区别。
3、完成练习七第2、3、4题
学生在练习时,要引导学生突出面积单位和体积单位换算的区别,还可以让学生明确:把高级单位的数改写成低级单位的数要乘进率。
四、全课小结
通过这节课的学习,你有什么收获吗?
五、课堂作业
练习七第3、4题
体积和体积单位课件 篇6
体积与体积单位(二)
【教学内容】
教科书第44--45页的例3、例4和课堂活动第1题和第2题,练习十一的第1--4题。
【教学目标】
1.知识与技能:使学生明确1m3的概念,建立1m3的大小观念。
2.过程与方法:能区别使用1cm3,1dm3,1m3去度量物体的体积。
3.情感、态度与价值观:感受数学与生活的密切联系,激发学生的学习兴趣。
【教具准备】
米尺,棱长分别为1cm,1dm的正方体。
【教学重点】
各种体积单位的大小。
【教学难点】
用体积单位去度量物体的大小。
【教学过程】
一、复习引入
师(出示一根线、一张纸):一根线的长度用什么单位去度量?(长度单位)一张纸的大小用什么单位去度量?(面积单位)
师(拿出一盒粉笔):粉笔盒的体积大小又该用什么单位去度量呢?今天,我们就来认识体积单位。
二、教学例3
师:刚才同学们知道了1cm3,1dm3的大小,你能说说1m3的大小吗?
引导学生得出:棱长为1m的正方体的体积是1立方米,写作1m3。
师:你能用手比划一下1m3的大小吗?
做游戏:
3个学生用3块1m长的尺子在老师的帮助下在墙角围成一个正方体,这个正方体的体积是1m3,然后让学生依次钻进去。呀!1m3能装10个学生。
将书包放在这个正方体模型里垒起来,能垒多少个书包?
师:我们已经认识了哪些体积单位?(1cm3,1dm3,1m3)
师:你能说说这三个体积单位谁是最大的?(1m3)谁是最小的?(1cm3)
三、教学例4
出示例4:1dm3等于多少立方厘米?
师:1dm3等于多少立方厘米?能用类似的方法推导出来吗?
1.将学生分组,用棱长是1dm的正方体推导。教师巡视指导,让每个学生在1dm2的纸上画出100个小格,然后贴在棱长为1dm的正方体纸盒(木块)的6个面上。
2.展示推导过程:一排有10个,一层有100个,10层就是1000个,所以1dm3里有1000个1cm3。
3.归纳总结:课件展示将一个棱长为1dm的正方体分割成1000个棱长为1cm的小正方体的过程,并板书:1dm3=1000cm3。
4.你能推导出1m3=()dm3吗?
学生可以分组讨论出结果,再抽生说一说推导的方法。
用刚才的方法推导出1m3=1000dm3。
5.总结相邻两个体积单位间的进率。
提问:你学过哪些体积单位请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
1dm3=1000cm3
1m3=1000dm3
得出:相邻两个体积单位间的进率是1000。
四、构建长度、面积和体积单位的计量系统
出示表格,学生独立填写,并集体订正
相邻两个单位间的进率
长度单位mdmcm10
面积单位m2dm2cm2100
体积单位m3dm3cm31000
五、课堂活动
第1题是一个开放性的题,可以让学生在小组内先说一说,再全班汇报。
第2题学生可先独立完成,再集体订正。
六、课堂练习
第48页练习十一第1题。
可分组活动,先用1cm3的小正方体拼出一个和墨水瓶盒大小差不多的长方体,估算一个墨水瓶盒的体积。再将小正方体装在墨水盒里,比较一下估算的结果。
七、课堂作业
练习十一第2--4题。
八、全课小结
同学们,今天这一节课我们学习了什么?你有什么收获?