【#实用文# #容积和容积单位课件#】教学过程中教案课件是基本部分,每天老师都需要编写自己的教案课件。同时还要了解写好教案课件的重要性,它能够帮助老师明确教学意图。在编写教案课件时,需要注意以下问题: 1. 教学目标清晰明确:教案课件应明确教学目标,确保学生、老师和教学内容之间的一致性。 2. 课堂组织合理有序:教案课件应按照教学进程和教学活动的顺序组织,确保课堂教学流程的合理性和学生学习的连贯性。 3. 内容简明扼要:教案课件应简洁明了,避免冗长和繁琐的描述,重点突出教学要点。 4. 图文并茂、多媒体运用:教案课件可以通过插入图片、图表、视频等多媒体元素,使教学内容更加生动有趣,提高学生的学习积极性。 5. 反思与调整:编写教案课件时,要不断反思自己的教学策略和方法,及时调整教学策略,以提高教学效果。 希望这些关于教案课件的提示对你有所帮助,记得收藏本网站的网址,以便随时查看。
容积和容积单位课件【篇1】
学情分析:
容积和容积单位的教学是在体积和体积单位之后,学生对体积有了一定的认识,体积单位已掌握,并很明白其大小关系,以及它们之间的进率,能用其解决问题。容积的概念较抽象,理解是重点,教学中应让学生多说。从表象抽象出概念,在教学容积单位以及它们的关系时,让学生多观察感知。因此本节设计以学生观察、动手实践为主,感受升和毫升,让学生在动手操作中学到知识。
教学目标:
知识与技能:
1、 使学生认识常用的容积单位升和毫升。
2、 掌握升和毫升间的进率以及它们和体积单位间的关系。
3、 理解容积和体积的概念既有区别又有联系。
过程与方法:
1、 经历容积概念的探究与理解过程。
2、 通过比较明确容积单位与体积单位的区别与联系。
情感态度价值观:
1、 培养学生的观察意识和探究意识。
2、 培养小组合作意识,体验合作乐趣,体验数学与生活的密切联系。
3、 渗透事物之间是相互联系的辩证唯物主义思想。
教学重点:
建立容积概念,掌握容积单位间的进率。
教学难点:
理解容积与体积的联系和区别。
教法与学法:
教法:引导观察表述,实际操作演示。
学法:观察思考,动手操作,小组合作交流。
教学准备:
教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,1dm3的自制的可盛水的纸盒,2个500ml的饮料瓶,10ml钙铁锌口服液,习题纸,小黑板(复习题),5ml注射器1支
学生:贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。
教学过程:
一、复习导入:
1、 什么叫做物体的体积?
2、 常用体积单位有哪些?你知道他们之间的关系吗?
填一填:
2.04m3=( )dm3 ( )dm3=12000cm3
1400cm3=( )dm3 1.2m3=( )dm3=( )cm3
(设计意图:复习是为了为容积和容积单位的学习做铺垫,为单位换算提供方法)
大家练习做得很好,相信大家在掌握旧知识的基础上,今天的新知识会掌握得更好。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)
二、理解容积的概念
1、观察发现,引出容积。
出示长方体纸盒:什么是这个长方体盒子的体积?打开盒子,你发现了什么?(空的)可以放什么?(学生说一说)我们把这个盒子所能容纳物体的体积,叫做盒子的容积。
出示墨水瓶:指出墨水瓶所能容纳物体的体积叫做墨水瓶的容积。
(设计意图:初步感知体积与容积的区别和联系)
2、理解容积的含义。
利用你准备的学具来说说,什么是它们的容积。
3、什么是容积呢?
像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。
(设计意图:引导学生充分交流,引导学生由表象抽象出概念,这样学生对概念的理解就加深了。)
4、 容积和体积的区别与联系。
你能说说容积和体积有什么区别和联系吗?
小组讨论,交流汇报。
区别:体积求的是物体占空间的大小。(外部)
容积求的是物体所能容纳空间的大小。(内部)
(设计意图:让学生在交流中体会体积和容积的区别与联系)
三、认识容积单位以及与体积单位之间的关系
1、 明确计量容积使用体积单位。
常用的体积单位有:立方厘米、立方分米、立方米
2、认识升和毫升。
a、 观察学具,看看你所带的物品上所标示的净含量,你发现了什么?小组交流。
汇报:发现它们的单位都是(L、 ml),而且这些东西里边装的是液体。
(设计意图:引导学生从生活中发现数学,认识容积单位在生活中的应用。)
b、 在计量液体的体积时,如水、油等,常用容积单位升(L)和毫升(ml)并板书。当遇到液体体积很大时,例如:计量蓄水池里的水的体积,就用立方米。
c、 指名说说你所带物品的容积是多少?
3、探究L 、ml与体积单位的关系
你们想知道L和ml与体积单位间的关系吗?请大家认真观察。
(1)介绍量杯,观察1L的刻度线,并往里边倒入1L水。感受1L的大小。(由于纸盒自制,要盛水需套塑料袋,倒水时需要边倒边解释,由于水的张力使塑料袋紧贴纸盒四壁。)
(2)出示装有1ml红墨水的注射器,观察并感受1ml的大小。
(3)演示操作:
将1升水倒入1立方分米的正方体盒中,(由于纸盒自制,要盛水需套塑料袋,倒水时需要边倒边解释,由于水的张力使塑料袋紧贴纸盒四壁。)你发现了什么?
将1毫升水挤入1立方厘米的正方体盒中,你发现了什么?
通过你的发现,你得出了什么结论?
1升=1立方分米 1毫升=1立方厘米
(设计意图:实际操作演示让学生看得更直观,不仅感受了1升和1毫升的大小,并使得升和毫升与体积单位间的关系,化抽象为直观形象,在理解的基础上加深记忆。)
4、研究L 与ml的关系
演示:将两瓶500ml的水倒入量杯中,观察量杯的刻度你发现了什么?得出了什么结论?
1L=1000 ml
(设计意图:通过观察,理解它们之间的关系)
5、 估算1L的大小
(1)小组活动:将一瓶矿泉水倒在纸杯中,看看可以倒几杯。估计一下一杯水大约有多少毫升,几杯水大约是1升。
小组活动,交流汇报。
(2)倒入量杯,验证估算结果。
(设计意图:培养学生的估算能力,让学生估算大约几杯水是1L,之后倒入量杯证实学生的估计。再次真实地感受1L的大小。)
四、拓展延伸
说一说,你在生活中见到过哪些物品上标有升和毫升?
(设计意图: 联系生活实际,让数学回归生活,激发学生学习的兴趣,培养学生细心观察的良好习惯。)
五、练习巩固
1、完成答题
纸上练习一。
填一填:
一瓶钢笔水的容积是60( )
摩托车油箱的容积是8( )
一瓶矿泉水的容积是600( )
运货集装箱的容积约是40( )
微波炉的容积是45( )
集体订正、纠错。
2、完成答题纸上练习二。
化一化:
4 L =( )ml 4800 ml =( )L
2.4 L =( )ml 500 ml =( )L
785 ml=( )cm3=( )dm3 7.5 L=( )dm3=( )cm3
8.04 dm3=( )L =( )ml 2750 cm3=( )ml=( )L
你能说说是怎么换算的吗?
六、课堂小结
通过今天的学习,你有哪些收获呢?
学生交流学习所得。
七、板书设计:
容 积 像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。
和 一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)
容积单位 计量液体:升(L)、毫升(ml)、立方米(m3)
它们间的关系:1L= 1dm3
1 ml=1 cm3
1L=1000 ml
容积和容积单位课件【篇2】
教学目标
1、使学生进一步认识体积、容积单位,并能比较熟练地化聚和换算。
2、进一步掌握长方体和立方体体积计算公式,并能比较熟练地计算长方体和立方体的表面积和体积,以及解答相应的应用题。
教学重点、难点
重点、难点:比较熟练地计算长方体和立方体的表面积和体积,以及解答相应的应用题。
教具、学具准备
教学过程
备注
一、整理长度单位、面积单位、体积单位和容积单位。
1、复习长度单位、面积单位、体积单位和容积单位相邻单位之间的进率。
2、说说化聚的方法
3、独立填括号。
5.4立方米=()立方分米
0.12立方分米=()立方厘米
6800立方分米=()立方米
3590立方厘米=()立方分米
470厘米=()分米=()米
6200平方厘米=()平方分米=()平方米
1.65升=()毫升=()立方厘米
7300毫升=()升=()立方分米
4、反馈。
二、复习长方体和立方体。
1、复习长方体和立方体表面积、体积的计算方法。
长方体的表面积=(长宽+长高+宽高)2
长方体的体积=长宽高
立方体的表面积=棱长棱长6
立方体的体积=棱长棱长棱长
2、独立计算:填表
长(a)
宽(b)
高(h)
底面积
(S)
表面积
体积
(V)
长方体
1.8米
0.6米
1.5米
10厘米
42平方厘米
教学过程
备注
立方体
棱长
8分米
3、应用题
(1)一个长方体油箱,长和宽都是0.5米,高是0.4米。它的容积是多少升?要做这样一个油箱至少需要铁皮多少平方米?
(2)一个理发法庭铜块,棱长16厘米,每立方分米的铜重8.9千克。10个这样的铜块重多少千克?
(3)一个长方体的长是12厘米,宽是5厘米,体积是360立方厘米。这个长方体的表面积是多少?
(4)一个长方体游泳池的长是50米,宽是20米,深是2.5米。
①环绕游泳池的水面,在池壁上用红漆画一条界线,这条界线的长是多少?
②如果用瓷砖贴池的四周和底面,贴瓷砖的面积是多少?
③如果池内水深2米,这个游泳池注水多少吨?(1立方米水重1吨)
a、弄清题意,认真审题
b、在理解题意的基础上,独立计算。
C、反馈,说一说解题思路和解题过程。
三、课堂总结
四、课堂作业《作业本》
通过复习学生进一步认识体积、容积单位,也能比较熟练地化聚和换算。还复习了长方体和立方体体积计算公式,以及解答相应的应用题。从学生的练习情况来看,单位的化聚和换算掌握得比较好,长方体和立方体的具体应用,有一部分学生由于理解、分析能力比较差,造成错误也比较多,对这些学生要加强训练。
容积和容积单位课件【篇3】
目标
①使学生认识常用的容积单位:升、毫升。
②掌握升与毫升间的进率以及它们和体积单位的关系。
③理解容积和体积的概念既有联系又有区别。
教学及训练
重点
容积和体积概念的联系与区别。
仪器
教具
容纳1升液体的量杯和1000毫升液体的量筒各一个。一个长20厘米、宽18厘米、高10厘米的长方体纸盒和木盒各一个。
教学内容和过程
教学札记
一、创设情境
1、填空。
(1)叫做物体的体积。
(2)常用的体积单位有、、,相邻的两个体积单位间的进率是。
2、一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?
二、探索研究
1、教学容积的概念。
(1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?
师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。
(2)学生举例。
①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)
(3)容积的计算方法。
师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
师:这是为什么?(出示一个木盒)
2、教学容积单位(板书课题)
(1)翻开书第28页,让学生看第三自然段。
板书:升毫升
(2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:
1升=1000毫升。
(3)容积单位与体积单位的关系。
1升=1立方分米1毫升=1立方厘米
3、应用。
出示例4,指一名学生读题。
(1)分析理解题意:求这个油箱可以装汽油多少升?就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?
(2)学生做完后集体订正。
643=72(立方分米)
72立方分米=72升
三、巩固练习
1、第28页的练一练中的第1题、第2题;
2、练习五的第5、6、7题。
四、课堂小结
学生小结今天学习的内容。
五、思考练习
做练习五的第8、9、10题。
容积和容积单位
1、什么是容积?
2、哪些物体有容积?
3、怎样计算容积?
容积单位:
1升=1立方分米
1毫升=1立方厘米
容积和容积单位课件【篇4】
大家好,今天我说课的内容是人教版义务教育课程五年级数学下册《容积和容积单位》的第一课时。
我准备从以下六方面进行说课:
一、基于课程标准;
二、基于教材;
三、基于学生经验;
四、叙写学习目标;
五、评价设计;
六、教学流程。
下面我针对这六方面详细介绍。
一、基于课程标准
课标中指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
《容积和容积单位》属于第二学段“空间和图形”这一领域里的内容。依据课程标准,本课的具体目标是:“通过实例,了解容积的意义及度量单位,会进行单位之间的换算,感受1升和1毫升的实际意义。
二、基于教材
《容积和容积单位》是这一单元第4个内容,它是在学生掌握了长方体和正方体的特征、表面积、体积的基础上进行的,是一节数学概念课。教材把这一内容安排在“体积和体积单位”的后面,意图就是让学生运用体积的知识来学习容积的知识。
三、基于学生经验
在容积概念的教学中,学生对于容积和体积容易混淆,甚至认为容积就是体积。在“升和毫升”的教学中,学生容易出现这两个问题:一是机械记忆升和毫升的进率,对升和毫升的体验比较肤浅,认识也模糊;二是认为升和毫升只有在计量容积时才会使用,其实不然。
四、叙写学习目标
根据上述分析,我将容积和容积单位的教学,设计成为动态的教学,通过教学活动让学生充分经历与体验容积和容积单位,所以制定以下的目标。
1.理解容积的概念,认识常用的容积单位,感知1升和1毫升的实际大小,并掌握容积单位、体积单位间的进率。
2.通过观察、实验的方法,使学生经历探究容积单位、容积单位和体积单位之间关系的过程。
3.体验数学与生活的密切联系,激发学习数学的兴趣。
教学重点:理解容积的概念,感知1升和1毫升的大小。
教学难点:建立容积单位、容积单位和体积单位之间的关系。
五、评价设计
本节课我采用的评价方式是交流性评价、表现性评价和应用式评价。根据确定的学习目标,力求评价的可操作性和可检测性。
针对目标1,我采用交流式评价和应用式评价,评价任务是推导梯形的面积公式和会求梯形的.面积。
针对目标2,我采用交流式评价和表现式评价,评价任务是利用梯形的面积公式解决生活中的实际问题。
针对目标3,我采用交流式评价和表现式评价,评价任务是渗透转化、迁移的数学思想方法。
下面我就结合我的课堂教学实践将本课的教学媒体应用以及效果向大家做一个简要的介绍。
六、教学流程
(一)联系旧知,引发思考。
孔子曾说过:温故而知新。新知识的构建是以已有的旧知识为载体的。因此,在课的开始我设计了复习体积、体积单位以及长方体体积的计算,能够较好的为学习新知识做好铺垫,同时,提出问题引发学生思考,流动的液体、气体能像长方体那样通过计算长、宽、高求体积吗?
(二)创设情境,感知概念
1.初步体会容积的概念
出示:茶叶筒、药盒、烧杯、墨水瓶,问同学们看到的这些物品都有什么用途呢?当学生说出来用来装东西时,教师指出能装东西的这些物体叫做容器,并把学生所说的“装东西”规范成“容纳物体”,并板书:容纳物体。
2.深刻体会容积的概念
出示长方体塑料盒,问:塑料盒的容积指的是什么?引导学生说出所能容纳的最大的正方体的体积就是塑料盒的容积。
设计意图:通过观察盒子中沙子的体积是否是盒子的容积的这组图片,让学生在具体实例中,体会容积的概念,没装满还能再装和装得太满了已经超过了的这两种情况沙子的体积都不是盒子的容积,只有装得不多不少,正好装满时才能体现容器的容积。
3.感知容积和体积的不同
出示两个体积一样的杯子,让学生比较它们的容积是否一样?
(三)联系生活,认识容积单位
通过问学生知道容积单位吗?在哪里见过?指出容积的单位是升和毫升,然后出示教具找出容积。
设计意图:让学生了解数学知识不是老师告诉的,而是自己知道的,体会数学知识到处都有,就在我们身边。
(四)实验操作,感知容积单位大小
通过实验操作,让学生有两次感知:第一次是感知1升和1毫升的大小,从而得出升和毫升之间的关系;第二次是感知容积单位与体积单位的互化,再次感知1升和1毫升的大小。
(五)回归生活,运用知识
第一关是基础练习,第二关是拔高练习。
(六)课堂小结
容积和容积单位课件【篇5】
教学目标
1、经历体积与容积的概念的建立过程,理解体积和容积的意义。感知常用体积和容积单位的大小,能正确地选择合适的单位进行相应数量的计量。
2、在亲历感知,在感悟中形成对学科学习的内在兴趣。
教学重点
教学难点通过参与试验、分析与尝试,掌握体积和容积概念,会确定体积和容积相应并能正确地把握体积的大小。
教学方法动手操作、分析、合作
教学准备每个小组准备一个盛水的量杯一个土豆
教学过程:
一、导入新课
师:我们已经学习了长方体和正方体表面积的知识,这节课,我们继续探究长方体和正方体的体积和容积。
二、感受物体的体积
1、分组实验
方法:将土豆放入一个盛水的量杯中,注意记录放入前后的水位高度。
猜想:量杯中的水位会发生什么变化?
观察:通过对上面实验的观察,有什么发现?看到土豆放入时,水位上升了;取出时,水位又基本复原。
思考:这个现象说明了什么?
生:土豆占有空间,入水时,水会被挤开,造成水位上升;而取出时,土豆所占的位置空出,水于是又复原。
2、体积的意义:
师引导学生读书57页中间文字并结合实验同桌交流自己所理解的体积的概念。
3、想一想:你还能用其它方法感受物体的体积吗?
三、感受物体的容积
1、①1箱牛奶的体积与6盒牛奶的体积比?(1箱牛奶体积大于6盒牛奶的体积。)②1盒牛奶的体积与1杯牛奶的体积比?(1盒牛奶的体积大于1杯牛奶的体积。)
从上面的结论中你想到了什么?(整个容器体积大于内中装的体积)
2、归纳容积的意义(板书)
3、同桌互相举例说明物体的体积与容器,及其大小比较。
四、体积单位
1、长度、面积和体积基本单位的确定:
棱长为1厘米的正方体的体积为1立方厘米
棱长为1分米的正方体的体积为1立方分米
棱长为1米的正方体的体积为1立方米
感觉一下1立方米的大小
(1)如果同学们在正方体模型中蹲着,会蹲下几个?
(2)如果把书包放在这个正方体模型中垒起来,大约可以垒多少个?
2、容积单位的确定:
师指出:我把能容纳1立方厘米和1立方分米物体的容积的大小分别叫做1毫升和1升。
在生活中计量液体的体积常以毫升和升为单位。(让学生认真阅读理解5960页中的文字,然后同桌相互说一说)
3、课堂活动:60页1、2题。通过课堂互动,让学生在搜索和交流中熟悉和增强体积和容积单位大小的实感。
五、全课总结
这节课你学会了什么?有什么新的感受?
六、布置作业
课本62-63页练习十二第1、2、5题。
第二课时
教学目标
1、掌握体积单位、容积单位之间的进率,能正确地进行单位间的改写。
2、让学生参与单位间进率的探究中感知。深化认识与把握。
3、感悟数学与生活息息相关,进而体验成功的乐趣。
教学重点
教学难点让学生借助对模型的分层探讨,理解常用体积单位和容积单位间的进率的由来,并掌握体积单位改写的方法。
教学方法知识迁移法、练习法
教学准备课件
教学过程:
一、复习导入新课
1、复习体积与容积的意义
一瓶矿泉水的标签写着:净含550ML,表示瓶中水的(容量、体积、容积)是550ML。
让学生认真一议,弄清问题是什么。显然是针对水的,由于水不是容器,不可能有容量、容积之说。所以只能是体积。
2、复习常见的体积单位
回顾一下常见的体积单位
3、导入新课
板书:体积与体积单位
二、合作探究
1、例5的教学:体积单位进率的的探讨
(1)课件展示例5:1立方分米=()立方厘米
小组探究
全班反馈:一排10个,一层100个,10层1000个。
(2)探讨
(3)填空
(4)熟记。
找出体积单位之间的进率的规律
同桌互说互测
2、例6的教学:体积单位之间的改写
(1)课件展示例6;说一说,算一算
先让学生议一议:
所示问题的实质是什么?怎么解决?再独立完成,最后进行全班反馈
反馈:问题的实质方法
思路的再反思
三、课堂活动:练习与操作
1、小组合作:估一估,量一量
2、练一练
四、全课总结
这节课主要学习体积单位,容积单位之间的进率和转化方法。
五、布置作业
4、6、7
容积和容积单位课件【篇6】
范文网后面为你推荐更多容积和容积单位教学设计!
教学内容:
义务教育教科书人教版教材五年级下册第三单元第七课时
教学目标:
1.理解容积的概念,知道常用的容积单位与体积单位间的关系,会计算长方体和正方体容器的容积解决单间的实际问题。
2.经历直观、实验、观察、想象、推理等数学活动过程,充分感知容积单位的实际意义及大小,建立健立1升、1毫升的表象,进一步发展学生的空间观念。
3.体验数学与生活的联系,培养学生的空间想象能力和推理能力。
教学重点:
理解容积的概念,知道容积单位与体积单位间的关系,会计算容积解决实际问题。
教学难点:
推导容积的进率,建立1升、1毫升的表象,培养学生的空间观念。
教学资源:
多媒体课件。标有1升的量杯,标有1毫升的量杯,1个试管,四个纸杯,1个1立方分米的容器。
教学过程:
一、创设情境,导入新课
1.课件出示长方体纸盒。这是一个长方体纸盒,我想知道这个长方体纸盒的体积,怎么办?(量出它的长宽高,算出体积。)从哪量?课件出示长宽高分别为8分米上、6分米、5分米。计算出体积。
2.往这个盒子里面装满沙子,猜这个盒子能装多少沙子?为什么装入的沙子的体积比盒子的体积少?(纸盒的体积是从处面量的,有厚度,而沙子在纸盒的里面,要把厚度去掉,从里面量)
3.盒子面所能容纳的沙子的体积就是盒子的容积,再比如,这个盆子,盆子里所能容纳的水的体积就是这个分子的体积。你能用自己的话说一说什么是容积吗?(箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。)
4.这节课我们就来研究容积的知识,板书课题:容积和容积单位。
二、自主探索,合作交流
1.讲述:计量容积,一般就用体积单位,板书:——,计量液体的体积时,常用容积单位升、毫升。板书:——升、毫升。
2.课件出示:眼药水瓶上写的:10mL;果蔬汁盒上写的:250mL;绿茶瓶子上写的:1L,你知道它们的含义吗?把升用字母L表示,毫升用字母mL表示,板书——
3.(1)我要将这一升水,倒入这个1000毫升的量杯中,请同学们认真观察,10毫升水大约是这么多,想象一下毫升水大约有多少?100毫升水是这么多,500毫升水是这么多,把这一升水全部倒入这1000毫升的量杯中了,你发现什么了?(1升=1000毫升板书:——)
(2)把这1升水倒进这个1立方米的容器里,你发现什么了?我再把这样升水倒入这个1立方分米的容器中,你发现了什么?(容积单位和体积单位有这样的关系:1升=1立方分米。1Ml=1立方厘米。)
4.生活中哪些物品上标有毫升和升,这些物品的容积大约是多少?计这个纸杯大约能装多少水?(把纸杯倒满水,再倒入量杯中,发现这个纸杯大约能装200毫升水);估计一下几杯水大约是一升?(装满一升水,倒入纸杯量,发现5杯水大约是的升水)。
5.教学例5。学生独立完成,交流方法,强调长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但是要从容器里面量长、宽、高。
三、巩固练习,拓展应用
1.在括号里填上合适的单位。
(1)一瓶墨水约50()
(2)一桶色拉油约5()
(3)泡泡液约100()
(4)汽车集装箱约6()
2.单位换算。
30升=()毫升
mL=()L
46立方分米=()L
430mL=()立方厘米
2100立方厘米=()=mL=()L
升=()立方分米=()立方厘米
页第5题。某海岛战士为解决岛上淡水缺乏问题,和当地居民共同修建了一个长20m、宽10m、深的淡水蓄水池。这个蓄水最多可蓄水多少立方米?合多少升?
四、反思总结,自我建构
这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。
【容积和容积单位教学设计范文(精选3篇)】
容积和容积单位教学设计(共3篇)如果还不能满足你的要求,请在范文网搜索更多其他容积和容积单位教学设计范文。
容积和容积单位教学总结评语
容积与容积单位教学心得体会(共7篇)
面积和面积单位教学设计
体积与容积教学设计(共5篇)
容积教学设计(共6篇)
容积和容积单位课件【篇7】
教学内容:北师大课本P50页
教学目标:
1、结合实践活动,认识体积,容积单位之间的进率。会进行体积、容积单位之间的换算。
2、在操作、观察中,发展空间观念。交流和感受体积单位的大小,以及升、毫升的实际意义。
教学难点:掌握体积与容积单位换算,理解进率变化的原因。
教学过程:
一、复习体积和面积概念
1、什么是体积和容积?
2、举例说明你对体积与容积的理解。
3、复习有关长度与面积的概念,请举例说明。复习有关长度单位与面积单位的进率,试举例说明面积单位进率是如何演变来的。
二、引出课题,并板书:体积单位的换算
1、你知道体积与容积的单位之间的进率是多少吗?为什么呢?
学生尝试,了解学生对体积单位换算的已有知识基础。引出下图:
2、看书并讨论:每层摆在10排,拇排摆10个,一共是100个,再共摆10层,一共是1000个。
归纳:一个立方分米的体积,可以等同于多少个立方厘米呢?为什么?
想一想:请填左图:
三、课堂实践:试一试
学生归纳:
四、说一说,并填一填:
五、课堂练习,讨论分析:
P51页第2,3题
六、全课小结
通过今天的学习,你知道了什么?
七、课后作业:
容积和容积单位课件【篇8】
教学目标
1.知道容积的含义,认识容积单位,掌握容积的计算方法,能进行单位之间的换算。
2.在动手操作、实际测量中,理解容积与体积的联系和区别,能运用所学知识解决一些简单的实际问题。
3.在探索未知的过程中体验学习的乐趣,培养学生积极、主动地参与学习和探究活动的态度。
教学过程
一、创设情境,引入容积
1.自主分类,初步感知。
出示:魔方、木块、油桶、鱼缸、水杯、字典、文具盒、长方体塑料盒。
谈话:请同学们看屏幕,你能把这些物品分成两类吗?和小组里的同学说一说。
学生可能有不同的分法,反馈时,着重让学生说一说把油桶、鱼缸、文具盒、长方体塑料盒分为一类,其他物品分为一类是怎样想的。
2.观察比较,深化认识。
谈话:每个小组的桌上都有两个大小不同的水杯。请小组内的同学合作,在两个水杯里分别倒满水,比较一下哪个水杯里能盛的水比较多。
学生活动后,组织交流并归纳:水杯能盛水的多少就是水杯的容积。
提问:你能说一说油桶的容积指的是什么吗?鱼缸、文具盒、长方体塑料盒呢?
提问:你能用一句话说说什么叫做容积吗?
根据学生回答,揭示容积的概念。
【评析:容积的概念较为抽象,学生在理解上有一定的难度,教师设计的这一教学环节别具特色。首先,通过分类使学生认识到有些物体能容纳一些东西,有些不能;接着,通过实验引导学生归纳水杯能容纳水的体积就是水杯的容积,并类推出油桶、鱼缸等容器的容积的含义。在此基础上,引导学生理解容积的概念显得水到渠成。】
二、动手实践,自主探索
1.探索容积的计算方法。
提问:同学们已经认识了容积,你们还想了解容积的哪些知识?
学生可能会提出容积的计算、容积单位、容积和体积有什么联系与区别等问题。
谈话:怎样计算容积呢?请每个小组拿出桌上的长方体塑料盒,先仔细观察,想一想怎样才能算出这个长方体塑料盒的容积,然后把你的想法告诉小组里的同学。
交流并归纳:容积的计算方法与体积相同,但要从容器的里面量出长、宽、高。
追问:为什么要从里面量长、宽、高?
引导学生交流:塑料盒是有厚度的,从外面量,算出的是塑料盒的体积;从里面量,算出的才是塑料盒的容积。
【评析:教师充分相信学生的能力,给学生留有足够的时间和空间,放手让学生去探索容积的计算方法,并使学生在活动中逐步体会容积和体积之间的联系与区别。】
2.认识容积单位。
(1)谈话:请同学们自学课本第28页第2、3小节的内容,说一说你知道了什么?还想进一步研究哪些问题?
学生可能提出1升和1毫升各有多少?为什么1升=1立方分米等问题。
根据学生的回答,板书:1升=1000毫升。
(2)谈话:1升和1毫升的水有多少呢?先用量筒量出1升的水,再把1升的水倒入纸杯里,看一看1升的水大约有多少杯?
学生活动后,组织交流,并引导学生用一句话描述1升的水大约有多少。
教师拿出一个10毫升的试管,谈话:这是一个10毫升的试管,你能用它倒出1毫升的水吗?
学生活动后,引导学生用一句话描述1毫升的水大约有多少。
(3)谈话:我们已经知道1升和1毫升的水大约有多少。你能通过实验说明1升=1000毫升吗?先在小组里讨论可以怎样做,再按自己的方法试一试。
学生活动,教师参与学生的活动,并进行适当的指导。
反馈:哪个小组愿意把你们的方法介绍给大家?可以一边说,一边做。
(4)出示:一个容积是1升的量筒和一个正方体的容器(里面的棱长是1分米)。
谈话:这里有一个容积是1升的量筒和一个里面棱长是1分米的正方体容器,你有办法说明1升=1立方分米吗?
演示:把1升的水倒入正方体容器里。
提问:怎样解释1毫升=1立方厘米呢?(可以通过单位间的进率推出,也可以通过实验说明)
(5)练习:完成练一练第1题。
【评析:在此环节中,教师注重引导学生使用量筒、量杯等学具,通过观察、实验、分析、比较、概括等一系列活动,建立升、毫升的概念,弄清容积单位与体积单位之间的联系,使学生在获得数学基础知识的同时,积累丰富的数学活动经验,发展数学思考能力。】
3.教学例4。
(1)出示例4,提问:题目中的已知条件和问题是什么?你想怎样解答?自己在下面试一试。
学生独立完成后,组织反馈:你是怎样解答的?
(2)练习:完成练一练第2题。
三、分层练习,巩固深化
完成练习五的有关习题。(略)
四、全课总结
今天的学习中你有哪些收获?感受最深的是什么?还存在哪些疑惑?
【评析:一节课的学习,学生有所收获,有所体验,同时也产生了新的问题。这些新的问题将成为学生进一步探索的动力。】
总评
本课的教学设计结构紧凑、合理、巧妙,层次清楚,重点突出。全课教学以活动为主线,让学生在操作、实验、比较、合作和交流等活动中,自主地设计活动方案、交流活动体验、总结活动成果,实现了从被动地听数学向主动地做数学的转变,有效地改善了学生的学习方式,提高了课堂教学效率。同时也使学生在参与学习和探索活动的过程中不断地体验学习成功的愉悦,激发对数学学习的兴趣。
容积和容积单位课件【篇9】
教学内容:九年义务教育六年制小学数学第十册第39页。
教学目的:
1.使学生理解容积的意义,掌握容积的计算方法;
2.使学生认识常用的容积单位升和毫升,掌握单位间的进率,明确容积和体积的联系与区别;
3.培养学生的迁移类推能力、实际应用能力和良好的学习习惯。
教学重点:认识容积和容积单位
教学难点:容积概念的建立
教具准备:木盒,黄砂,l立方分米、i立方厘米的正方体及容器,量杯、量筒,滴管、药瓶、水。
教学过程:
一、复习
1.什么叫体积?
2.常用的体积单位有哪些它们之间的关系呢(板书:立方米、立方分米、立方厘米)
3.怎样计算长方体和正方体的体积公式呢(板书:v=abhv=a)
[评析:通过对体积知识的复习,为学习容积和容积单位作好铺垫。]
二、导入新课
1.教师拿出一只装满黄砂的木盒,说:这个木盒里装满了黄砂,你会计算木盒里面黄砂的体积吗
2.师:同学们,这只木盒里面装满的黄砂的体积,就是这个木盒的容积(板书课题:容积)。
3.今天我们就来学习物体的容积和容积单位。
(学生齐读课题)
[评析:导入新课阶段就给学生设疑,激发学生学习这课内容的兴趣,并且!暗示了体积与容积两个概念是有联系的。]
三、新授
那么什么叫做物体的容积,常用的容积单位有哪些呢?请同学们自学p39,同时思考下面几个问题:
①什么叫做物体的容积
②容积的计算方法是什么?
③计算容积,一般用什么单位
④计量液体的体积,常用什么单位它和体积单位之间有什么关系
要求:把认为重要的圈圈点点,看完后同桌围绕思考题展开讨论
2.学生回答思考题,教师同时板书:
①概念师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器;(板书:容器)②在v=abh、v=a后板书:从里面量;③容积单位:升、毫升④1升=1立方分米,1毫升=1立方厘米
[评析:根据高年级学生的学习能力和水平,要求学生带着问题去阅读课本,充分体现了发挥学生的主体作用,让学生自学是为了让学生学会学习和掌握思考问题的方法,达到会学的目的。]
3.师:根据容积单位和体积单位间的关系,你能推导出1升等于多少毫升吗(板书:1升=l00毫升)
[评析:根据知识迁移的规律,.运用有关体积单位的知识来推导容积单位之间的进率,有利于学生理解体积单位和容积单位间的联系。
4.学生质疑。
5.师提问。
拿起装满黄砂的木盒,说:同学们,老师说,这个木盒的容积就是这个木盒的体积,这句话对吗为什么那么,木盒的体积指什么本盒的容积指什么
小结:一般说来,物体的容积比体积小。拿起一只薄纸盒,说:有的时候,容器的壁比较薄,像这只纸盒,而且我们在做题目时,题后有要求:壁的厚度忽略不计(看书第39页第二小节),那么,这时候,就可以说,容器的容积就是这个容器的体积。
[评析:通过比较让学生感知容积蓄概念与体积概念的联系与区别]
6.认识量杯和量筒。
(1)师出示量杯和量筒,问:这是什么我们在量杯和量筒上,能看到刻有升和毫升的刻度。
(2)那么,一升水到底有多少呢演示
①把l立方分米的正方体模型放到容积为1分米的容器里,得出:容器的容积是1立方分米。
②往容器里装人红颜色的水,装满为止,得出:容器里面水的体积就是1升。
③从而得出1升=1立方米
(3)同理演示1毫升=1立方厘米
(4)你们见过量杯和量筒吗
举例:①配制农药时用的量筒。
②遵照要求吃药。演示:药瓶用法上的是每次20毫升,从量杯倒人汤匙,就是一汤匙。指出药瓶上的ml就是指毫升。
③那么,1立方米等于几升?1立方分米等于几毫升l升等于几立方厘米
[评析:通过举例让学生了解本课知识在以后的生活与生产实际中是经常运用到的,进一步让学生明也确学好本课知识的重要性]
7.练习:第39页做一做第1题,学生齐练。
8.教学例6
(1)审题:已知什么和要求什么
(2)学生试说解题思路。
(3)全班尝试练习解答。练后评析并与课本例6解答过程对照,教师对学生尝试结果给予评价。
9.练习第39页做一做第2题。
四、课堂总结
教师让学生说出今天学习什么内容知道了什么学会了什么
[评析:指导学生把本课学习的知识进行整理、归纳,并且进行检查对本课学习内容理解、掌握的情况,以利于在巩固练习阶段进行补漏。同时进一步巩固对本课知识的理解和掌握。]
五、巩固练习
1.第40页第6、7题,练完后集体校对,并订正。
2.判断下列说法是否正确,对的在()内打,错的打x。
①计算容积或体积都是从容器外面量长、宽、高。()
②冰箱的容积就是冰箱的体积。()
③游泳池注满水,水的体积就是游泳池的容积。()
④钢笔一次墨水,大约能吸1至2升墨水。()
七、思考题
一只无盖的长方体粉笔盒,长1分米,宽9厘米,高8厘米,木板厚1厘米,它的体积是多少容积是多少
[总评:本课的教学充分体现了操作演示,充分感知,以旧引新,迁移类推;充分发挥教师主导、学生主体作用三个特点。教学中各个层次的学习,教师都为学生提供实物进行直观操作演示,让学生充分感知容积的意义,建立1升、1毫升液体的量是多少的表象,理解容积单位间的进率,使学生对本课学习的内容具有理性的认识。
本课复习阶段复习了体积和体积单位的知识,为新授作好铺垫,导入也是运用体积的知识导入的,这样让学生去体会容积和体积知识的内在联系,新授中教师根据知识迁移的规律,让学生运用有关体积和体积主单位的知识学习容积和容积单位,有利于学生理解知识的内在联系,形成比较完整的认知结构。培养了学生的迁移类推能力。同时通过比较,让学生自己去发现体积与容积、体积单位与容积单位的区别。使学生明确体积与容积、体积单位与容积单位是既有联系又有区别的。
本课的教学主要是在教师指导下,让学生自学为主,学生带着问题有目的也有方向地去阅读课本,并展开讨论与交流,主动参与认知过程,充分体现学生的主体地位。同时教师进行适时点拨,循循善诱,充分发挥教师的主导作用。]
容积和容积单位课件【篇10】
教学目标
知识与技能:使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。感受1毫升的实际意义,和应用所学之事解决生活中的简单问题。
过程与方法:培养学生的观察能力和解决问题的能力
情感态度价值观:培养学生独立思考、严肃认真的学习态度。
教学重点
建立容积和容积单位观念,容积单位换算
教具、学具准备
长方体纸盒、木盒各一个,一些细沙;若干个容积为500ml的易拉罐,1dm3的正方体容器若干个,量杯、滴管若干个,一些水,例6的多媒体课件。
教学过程
一、复习导入
1、什么叫物体的体积?它常用的计量单位是什么?
2、师:(用橡皮泥做两个体积相等的长方体模型,空心,一个壁厚些)同学们,怎样才能知道这两个长方体体积?
生:可以先量出它们的长、宽、高各是多少,再算出它们的体积。
生:(动手测量)计算
师:(出示一堆细沙)请同学们再想一想,如果把这两个盒子都装满细沙,两个盒子里装的细沙会一样多吗?
师:同学们,像刚才你们看到的那样,盒子所能容纳细沙的体积,就是盒子的容积。
二、探求新知
1、教学容积的概念。
师:你认为还有什么物体也有容积呢?
生1:水桶里盛满水,这些水的体积就是水桶的容积。
生2:饮料瓶里装满饮料,饮料的体积就是饮料瓶的容积。
生3:茶叶桶所能容纳茶叶的体积,就是茶叶桶的容积。
……
(补充)仓库能容纳货物的体积,箱子里装书的体积,一个妈妈正往桶里装水,等。
教师:瓶子、油筒、仓库所能容纳的物体的体积,通常叫做它们的容积,这节课我们就来研究容积和容积单位。(板书课题)
2、认识容积单位。
(1)因为物体的容积通过所容纳物体的体积表现出来的,因此容积的计量单位一般就用体积单位。如上面盒子的容积可以用什么单位?
(2)计量液体的体积,如水、油等。通常容积单位升和毫升也可以写成L和ml。
举例:护工把一瓶药水交给病人,嘱咐说:“每天吃2毫升。”。司机对加油站的工作人员说,“加20升汽油。”商店里货架上的可乐,外包装上标着500ml……
(3)感知毫升和升
师:1ml究竟有多少呢?请大家认真观察。
(出示一个小量杯,请学生上台指出1ml所在的刻度。)
师:请同学们猜一猜,如果用滴管来滴水,滴几滴水可能是1ml?
(生猜测)
师生验证。
实际猜测药瓶容积。
师:把这1毫升的水倒进1立方厘米的正方体容器里面,刚好到满。
提问:这个这实验说明什么?(1ml=1cm3)
提问:大家想一想1升是多少毫升?相互讨论。
汇报:因为1升是1立方分米,1毫升是1立方厘米,而1立方分米=1000立方厘米,所以,1升就等于1000毫升。即1L=1000ml。
(出示一个易拉罐)每个小组都有一个易拉罐,请先看一看,它的容积是多少毫升?然后根据活动内容分小组进行活动。
(屏幕出现活动内容:易拉罐的容积有多少毫升?几个易拉罐的容积是1L?1L水大约可以倒满几杯?一杯水大约有多少毫升?然后再动手试一试,通过实验你发现了什么?)……
师:请你们想一想,除了上面的易拉罐,哪些物品上也标有毫升或升?
生1:牛奶盒子上标有毫升。
师:不错,有一种牛奶盒子上就标着250ml。
生2:我家的“凉拌醋”瓶子上标有500ml。
生3:我家吃的“金龙鱼”油瓶上标有5L。
……
师:请大家看屏幕,先认真想一想,再看怎么填。
[屏幕出示:5L=()ml,500ml=()L,2.4L=()ml=()cm3,2750ml=()L=()dm3。]
3、教学例5
师:请大家认真想一想,长方体和正方体容器容积的计算方法是什么?
教师讲解:容器容积的计算方法,跟体积的计算方法相同。但必须注意,计量的时候要从容器的里面量长、宽、高,才能更准确地算出它的容积是多少。
(屏幕出示例5,学生读题。)
①让学生尝试解答。
②解答:5×4×2=40(dm3)
40dm3=40L
答:这个油箱可装汽油40L。
讲评时要强调是从容器面量长、宽、高,并要注意,要把立方分米换算成长。汽油是液体,最用好“L”作单位。
“做一做”
三、巩固应用
1、填空
1L=()ML,450毫升=()升,6.4升=()毫升
2、判断
(1)一个游泳池的容积大约是2000毫升。()
(2)一个杯子能装水1升,这个杯子的容积就是1升。()
(3)一个正方体的木箱,它的体积和容积一样大。()
3、完成教材第53页练习九的第1~3题
四、全课总结
师:谁能谈谈这节课的收获?(生回答略)
容积和容积单位课件【篇11】
教学目标
1.使学生知道容积的含义.
2.认识常用的容积单位,了解容积单位和体积单位的关系.
教学重点
建立容积和容积单位观念,知道容积单位和体积单位的关系.
教学难点
理解容积的含义和升、毫升的实际大小.
教学步骤
一.铺垫孕伏.
1.什么是体积?
2.常用的体积单位有哪些?它们之间的进率是多少?
3.这个长方体的体积是多少?是怎样计算的?
二.探究新知.
我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位.(板书课题)
(一)建立容积概念.
1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)
实验题目:计算出长方体盒的体积.
把长方体盒装满细沙,计算细沙的体积.
2.学生汇报结果.
长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.
细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长.宽.高,再计算其体积.
教师追问:计算细沙的体积为什么要从长方体里面量长.宽.高?
3.师生共同小结.
教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积.我们看见过汽车上的油箱,油箱里装满汽油.这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积.
师生归纳:容器所能容纳的物体的体积,就是它们的容积.(板书)
4.比较物体体积和容积的相同和不同.
相同点:体积和容积都是物体的体积,计算方法一样.
不同点:体积要从容器外量长.宽.高;容积要从里面量长.宽.高.
所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积.(出示长方体木块)
(二)认识容积单位.
1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升.(板书:升毫升)
2.出示量杯:这就是1升的量杯.
出示量筒:这就是刻有毫升刻度的量筒.
3.教师演示升和毫升之间的关系:
①认识量筒上1毫升的刻度,找出100毫升的刻度.
②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止.
板书:1升=1000毫升
4.学生演示容积单位和体积单位间的关系:
①把1升的红色水倒人1立方分米的正方体盒里
小结:1升=1立方分米
②把1毫升的红色水倒入1立方厘米的正方体盒里
小结:1毫升=1立方厘米
5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?
6.反馈练习.
3升=()毫升2700毫升=()升
2.57升=()毫升640毫升=()升
2.4升=()毫升3.5升=()立方分米
500毫升=()升760毫升=()立方厘米
(三)计算物体的容积.
1.教学例1.
一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?
854=160(立方分米)
160立方分米=160升
答:这个油箱可以装汽油160升.
2.反馈练习.
一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?
1265=360(立方分米)
360立方分米=360000毫升
答:这个水箱可以装水360000毫升.
三.全课小结.
这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?
四.随堂练习.
1.填空.
(1)()叫做容积.
(2)容积的计算方法跟()的计算方法相同.但要从()是长、宽、高.
(3)6.09立方分米=()升=()毫升
1750立方厘米=()毫升=()升
435毫升=()立方厘米=()立方分米
9.8升=()立方分米=()立方厘米
2.判断.
(1)冰箱的容积就是冰箱的体积.()
(2)一个薄塑料长方体(厚度不计),它的体积就是容积.()
(3)立方分米()
3.选择.
(1)计量墨水瓶的容积用()作单位恰当.
①升②毫升
(2)3毫升等于()立方分米.
①0.3②0.3③0.003
4.一种背负式喷雾器,药液箱发容积是14升.如果每分钟喷出药液700毫升,喷完一箱药液需用多少分钟?
五.布置作业.
1.手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米.这个油箱可以装柴油多少升?每升柴油重按0.82千克计算,装的柴油重多少千克?(得数保留整数)
2.把调查的实际数字填在括号里.
一小瓶红药水是()毫升.
一瓶墨水是()毫升
汽车(或拖拉机)油箱的容积是()升
六.板书设计.
容积和容积单位
容器所容纳物体的体积,就叫做它们的容积.
1升=1000毫升1升=1立方分米1毫升=1立方厘米
例6.一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?
854=160(立方分米)160立方分米=160升
答:这台油箱可以装汽油160升.