back_img
好工具 >范文 >实用文

分式性质教案锦集

2024-08-29 17:50:15 分式性质教案

【#实用文# #分式性质教案锦集#】作为一名杰出的教育工作者,常需编写精心设计的教学计划,通过规划和安排,创造性地解决如何达成教学目标的问题。一份好的教学设计是什么样子的呢?下面是小编为大家整理的分式的运算教学设计,欢迎大家分享。

分式性质教案 篇1

各位评委:

下午好!我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材

1、教材内容:

我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、教材地位:

分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、教学目标

知识目标:

(1)、理解分式的乘除运算法则

(2)、会进行简单的分式的乘除法运算

能力目标:

(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

(2)、能解决一些与分式有关的简单的实际问题。

情感目标:

(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

(2)、培养学生的创新意识和应用意识。

(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用。

5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法

教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。

2、合作学习。

四、说教学程序

1、类比学习,探索法则。(约3分钟)

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

分式性质教案 篇2

活动流程活动内容和目的

基础性目标:理解和掌握分式的加减运算法则,熟练地进行同分母的分式加减法的运算。

发展性目标:会把异分母的分式通分,转化成同分母的分式相加减,

融通性目标:能解决一些简单的实际问题

理解和掌握:分式的加减运算法则、异分母的分式加减运算

(一)激情导学复习巩固同分母分数的加减法

(二)合作探究共同探究,在学习的过程中发挥团队学习的作用,共探共讨,互探共讨,达到差异学习,共同提高的目的。

(三)启思点拨在学习过程中对不同层次的学生加以点拨,对不同难度的题加以点拨,优生对后进生点拨。本过程重点点拨不同分母的分式如何进行加减运算。

(四)差异评价对本堂课学生对分式加减问题的掌握加以激励性的评价,对不同难度的题加以点评。并让学生不同层次的课后巩固题,让不同的学生得到不同的发展。首先通过生活事例引出本节课的主题——分式加减,然后利用一组分数加减习题抢答激起学生的兴趣,并进行类比,自然过渡到主题。 合作交流,通过类比归纳总结同分母分式加减的法则。降低问题的难度,帮助学困生理解,也使其建立信心。学生自我总结,自我反思,教师加以激励性的评价,辅以不同层次的课后巩固题。让学生在情感态度、价值观方面得到提升。

问题与情境师生活动设计意图

(一)激情导学

1、现有一份文件需要输入电脑,甲同学单独完成用时a小时,乙同学单独完成要比甲多2小时,那么两人共同工作1小时能完成几分之几?分析:甲工作1小时完成____, 乙工作1小时可以完成______________,那么,两人共同工作1小时能完成___________.

2、下面进行一组有关分数加减的抢答。3、请学生回忆分数加减的法则。

(二)合作探究

1、相信你已经会计算了

2、归纳同分母分式的加减法则同分母分式相加减,分母不变,把分子相加减。用式子表示:

3、例题讲解

教师提出问题学生思考、交流,回答问题老师播放题目学生抢答。学生回答学生首先独立思考,再交流答案,然后老师公布答案。提出现实生活中的问题,使学生积极主动地投入到数学活动中去,同时让学生感受到学习分式的加减是生产和生活实际的需要,从而调动学生的学习积极性。通过抢答让学生迅速进入课堂,尽快达到兴奋点,并为解决分式的加减作铺垫。为归纳分式加减法法则做铺垫,建立新旧知识间的联系4、学生操练

(三)启思点拨

请想一想下面这道题又该如何解呢

再请看这道题又该如何解答?指出下列各组分式的最简公分母:

然后完成上面四道题再归纳异分母分式加减法法则先通分,把异分母分式化为同分母分式,再相加减用式子表示:学生根据前面的计算用自己的语言进行归纳老师板书例题学生利用新知并模仿例题解答。请两位学生板演。注意引导学生对加减后的结果进行约分。学生观察、讨论,教师启发式提问学生两个分式的分母相同吗,有什么联系?通过前面的抢答练习让学生大胆猜想分式的加减,并通过核对正确结果获得成功感。 通过 培养学生合作交流的学习习惯,鼓励学生用类比的思想学习新知识。让学生掌握分式加减的.基本格式。同分母分式的加减法比较容易,它是进一步学习异分母分式加减的基础。同时让学生加深巩固最后结果必须是最简的。让学生经历尝试、归纳、应用的学习过程。培养学生探究性的学习,在这一过程中,让学生互相帮助,合作学习。通过学生的自主探究,合作交流,培养学生的总结归纳能力。火眼金睛判断下面计算是否正确

知识迁移敢于挑战

先化简,再求值:其中x=3

(四)差异评价

1、这节课,我学会了…我感受最深的是…我想我将会…我还有疑惑的是……

2、差异导学稿。知识迁移,学生尝试练习,教师巡查,加以辅导,注意作图的正确性。

小组讨论,将问题进行升华,让优生能获得更多。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行恒等变形。学生用自己的语言进行归纳学生独立思考再交流。学生思考、交流学生练习学生自我总结,老师加以点评。对课后的习题分不同层次,对不同的学生提出不同的要求。让学生进行充分的交流,用优生带动后进生学习,培养学生互帮互助的精神。异分母分式的加减与同分母分式加减运算相比要困难一些,这里主要是做好“转化”工作,即把异分母分式加减转化为同分母的分式加减运算。通过探索、归纳,使学生的知识体系由实践上升为理论。通过对一些学生容易出现的错误的分析,加深他们对新知识的巩固。加大题目难度,鼓励学生敢于探索、挑战,让优生也能“吃得饱”结合中考题,让学生感知其实中考也很简单,建立自信。

分式性质教案 篇3

学习目标:

(一)知识与技能目标

使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.

(二)过程与方法目标

经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性

(三)情感与价值目标

渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.

学习重点:掌握分式的乘除运算。

学习难点:分子、分母为多项式的分式乘除法运算。

教学过程

一、情境引入:

你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?

(1) = (2) =

二、探究学习:

(1)你能说出前面两道题的计算结果吗?

(2)你能验证分式乘.除运算法则是合理的.正确的吗?

(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?

归纳小结:

(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ab ×cd =acbd 。

(2)分式的`除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:ab ÷cd =ab ×dc =adbc 。

(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( ab )n=anbn

三、典型例题:

例1、计算:1. . 2。( )

例2、计算、1. 2.

归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.

四、反馈练习:

(1) (2) .

(3) (a-4). (4)

五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?

(2)你认为买大西瓜合算还是买小西瓜合算?

七、课堂小结:

1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。

2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。

【课后作业】

班级 姓名 学号

1、 填空

(1) (2)

(3) (4)

(5) = (6)

(7)若代数式 有意义,则x的取值范围是__________.

2、选择

(1)下列各式计算正确的是 ( )

A. ; B.

C. ; D.

(2)下列各式的计算过程及结果都正确的是 ( )

A.

B.

C.

D.

(3)当 , 时,代数式 的值为( )

A.49 B.-49 C.3954 D.-3954

(4)计算 与 的结果 ( )

A.相等 B.互为倒数 C.互为相反数 D.以上都不对

(5)若x等于它的倒数,则 的值是 ( )

A.-3 B.-2 C.-1 D.0

3、计算

(1) (2)

4、中考链接(选作题)

已知aba+b =13 ,bcb+c =14 ,aca+c =15 ,求代数式abcab+bc+ac 的值。

分式性质教案 篇4

一、学生知识状况分析

知识技能基础:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础。

能力基础:

在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。

二、教学任务分析

具体学习任务分析:本节课的重点是分式乘除法的法则及应用,难点是分子、分母是多项式的分式的乘除法的运算。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。因此,本课时的教学目标是:

1.类比分数的乘除运算法则,探索分式的乘除运算法则。

2.理解分式的乘除运算法则,会进行简单的分式的乘除法运算

3.能解决一些与分式有关的简单的实际问题。

4.通过师生讨论、交流,培养学生合作探究的意识和能力。

三、教学过程分析

第一环节复习旧知识

复习小学学过的分数的乘除法运算。

活动内容

1、计算,并说出分数的乘除法的法则:

分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.

活动目的:

复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备。

教学效果:

学生能准确的说出分数的乘除法运算法则。

第二环节引入新课

活动内容猜一猜:

你能总结分式乘除法的法则吗?与同伴交流。

分式的乘除法的法则:

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

活动目的:

让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

教学效果:

通过类比分数的乘除法的法则,学生明白字母代表数,这样很顺利的得出分式的乘除法的`法则。

第三环节知识运用

活动目的:

通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,并能解决一些与分式有关的简单的实际问题,增强学生代数推理的能力与应用意识。需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简。

教学效果:

学生能将算式对照乘除法的法则进行运算,在运算结果中,如果不是最简分式往往忘记约分,因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以是运算简化。

通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为(其中R为球的半径),那么,(1)西瓜瓤与整个西瓜的体积各是多少?

(2)西瓜瓤与整个西瓜的体积的比是多少?

(3)你认为买大西瓜合算还是买小西瓜合算?与同?交流

活动目的:

能解决一些与分式有关的简单的实际问题。

(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分

(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.

③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面.

最后的计算结果必须是最简分式.

第四环节课堂反馈

活动内容:

化简

对本节知识进行巩固练习

教学效果:

在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

分式性质教案 篇5

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第35~36页。

教学目标

1. 使学生在解决实际问题的过程中,理解并掌握三步混合运算的顺序,并能正确地进行运算。

2. 使学生在理解混合运算顺序的过程中,进一步积累数学学习的经验,能用三步计算解决实际问题,发展数学思维。

3. 使学生在数学学习中,进一步感受混合运算的应用价值,增强对数学学习的信心,培养严谨、认真的学习习惯。

教学过程

一、 铺垫

1. 第一轮第一次游戏:用三张牌“算24点”。

谈话:“算24点”游戏是我国劳动人民发明创造的,它具有益智、怡情等功能,因而备受人们的喜爱。今天,我们也来玩一玩“算24点”的游戏怎样?

呈现三张扑克牌:2、4、10。

待学生列出:2 × 10 + 4和4 + 2 × 10之后,教师追问:两道算式不同,都能算得24吗?为什么?

板书:算式中有乘法和加法时,先算乘法,再算加法。

2. 第一轮第二次游戏:教师再呈现三张扑克牌:4、4、7。

提问:

(1) 这道题我们也可以列出两道算式吗?为什么?

(2) 4 × 7 - 4的算式中,我们可以先算减法吗?

(3) 算式中有乘法和减法时,应该按什么顺序进行运算呢?

[设计意图:本节课的引入方式可有多种,比如教材中联系实际问题,从具体的情境引入便是其中的一种。可这里似乎也有一些值得讨论的地方:一方面,我们可以借助具体的情景帮助学生理解混合运算的顺序,以便从算理上弄清为什么“先算乘、除法,后算加、减法”的道理。但另一方面,我们又不能不看到,到了三步以上的混合运算,如果要嵌入具体的情景之中,对学生的思维要求,特别是解决问题能力的要求是比较高的。因此,新课的引入,不应拘泥于一种固定不变的模式,而应该从学生已有的知识经验出发,寻求一个最能激发学生探索愿望、最有利于学生自主探索的切入口,使学生在有效的学习活动中得到充分的发展。

怎样才能使教学活动既符合学生的认知基础,又富有一定的现实性和挑战性呢?我想到了“算24点”这个游戏。

理由有三:

一是这个游戏学生玩过,有经验、有兴趣,且不会在游戏规则的问题上耗费太多的时间;

二是游戏的机动性强,三张牌、四张牌都可以玩,而用三张牌玩,刚好对应学生已经掌握的两步混合运算知识,用四张牌则对应了这节课将要学习的新知,这使得学生激活已有的经验成为可能,又使得旧知向新知的过渡变得自然而顺畅;

三是算式被赋予了恰如其分的“意义”,学生要算得24,在头脑中已经经历了一个“分步列式”的过程,一旦形成综合算式,并不影响头脑中原有的运算顺序,相反,学生正是用头脑中已经确定的运算顺序来阐释综合算式的运算顺序,这就使得综合算式的运算顺序与学生头脑中的解题顺序对应起来,从而体会到混合运算顺序的合理性。]

二、 新授

1. 第二轮第一次游戏。

引导:我们用四张牌来玩“算24点”游戏,情况会怎样呢?

教师呈现四张扑克牌:2、2、5、7。

要求:个人独立思考,尝试列出综合算式,然后将意见带到小组内进行交流。

小组交流:

(1) 小组内成员所列的算式都相同吗?

(2) 这些算式运算的顺序和步骤也相同吗?

(3) 比较不同的运算顺序,有区别吗?

根据学生的回答,教师分别呈现:

2×5+2×7 2×5+2×7

=10+2×7=10+14

=10+14=24

=24

2. 引导比较:两种运算顺序都是正确的,但哪一种运算过程更简单一些呢?

3. 教师呈现:40 ÷ 4 - 28 ÷ 7,要求学生独立计算。

4. 比较:2 × 5 + 2 × 7和40 ÷ 4 - 28 ÷ 7的运算顺序有什么相同的地方?

5. 第二轮第二次游戏。

教师呈现四张扑克牌:3、6、6、9。

学生先行独立思考后,在小组内进行第二次合作。

学生可能列出的算式有:6 × 6 - 3 - 9,6 + 6 ÷ 3 × 9,6 + 9 ÷ 3 × 6,6 + 6 × 9 ÷ 3,3 + 6 + 6 + 9……

6. 将上面的算式按运算顺序的不同进行分类,观察分析后比较:

(1) 哪些算式不是按照从左往右的顺序进行运算的`?这些算式有什么共同的特征?

(2) 哪些算式应该按照从左往右的顺序进行运算?这些算式有哪些相同和不同?

(3) 在没有括号的算式里,如果有乘、除法和加、减法,应按照怎样的顺序进行运算呢?

7. 小结规律,板书课题:混合运算。

[设计意图:学生得出“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法”,其实是经历一个归纳推理的过程。为了让学生对得出的结论深信不疑,我们应努力呈现各种情况,让学生在分析、比较、综合、概括的过程中加深对事理的理解。这一部分,我安排了两轮游戏,其作用分别对应于教材中的“例题”和“试一试”两部分的知识要点。第一部分侧重于体验学习,学生亲历尝试和交流,体会将算式中的乘法同时运算的优越性。第二部分侧重于分类和归纳,在开放的情境中比较同一级运算与两级运算的区别,进而发现两级运算的共同特征。值得一提的是,这一部分我着意引导学生进行了多次比较,如简单运算与较复杂运算的比较,同一类运算中不同运算顺序的比较等等,落脚点都是为了帮助学生建立起两级运算的运算顺序,增强学生的抗干扰能力。]

三、 巩固

1. 先说一说下面各题的运算顺序,再计算。

80 ÷ 2 + 76 ÷ 4 240 ÷ 6 - 2 × 17

45 - 20 × 3 ÷ 4 51 - 36 ÷ 3 + 25

评讲:第一行两道题怎样计算更简便些?第二行两道题的运算顺序有什么不同?为什么会有这样的不同?

2. 小虎学了今天的知识以后,很高兴,老师要求完成20 × 5 - 20 × 5和20 × 5 ÷ 20 × 5两题的计算,小虎不一会儿就算好了。同学们,我们也来看一看,小虎做得对吗?

20×5-20×5 20×5÷20×5

=100-100=100÷100

=0=1

[设计意图:小虎做的两题形式上比较相近,但第二题属同一级运算,第一题是两级运算。根据教学的前馈信息,学生常常容易发生混淆,故此处将两题同时呈现出来专门研究,便有了必要性。]

3. “想想做做”第4题。

学生独立完成后,讨论:求兵兵家的人均居住面积比乐乐家大多少,要先算什么,再算什么?

4. 在数与数之间添上加、减、乘或除号,使计算结果正好等于右边的数。

2 2 2 2 = 1

2 2 2 2 = 2

2 2 2 2 = 3

2 2 2 2 = 4

2 2 2 2 = 5

[设计意图:练习设计努力体现针对性、层次性、综合性、开放性等特点,不仅立足于帮助学生巩固计算的方法,加深学生对本节课知识的理解,而且在不断变式的过程中,引导学生学习有趣的数学、有用的数学、智慧的数学。]

分式性质教案 篇6

学习目标

1、知道乘法结合律,能运用运算定律进行一些简便运算。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性

3、能用所学知识解决简单的实际问题。

学习难点:探究和理解结合律,能运用运算定律进行一些简便运算。

学习重点:探究和理解结合律,能运用运算定律进行一些简便运算。

教学流程:

一、 出示课题

板书:探究和理解结合律,能运用运算定律进行一些简便运算。

二、出示学习目标

1、知道乘法结合律,能运用运算定律进行一些简便运算。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性

3、能用所学知识解决简单的实际问题。

三、自学指导

自学书本第25页的内容,自己完成以下的问题:

主题图引入(观察主题图,根据条件提出问题。)

一、自学提纲

1、针对上面的问题1列出算式,有几种列法。

2、为什么列的式子不同,它们的计算结果是怎样的。

3、两个算式有什么特点?你还能举出其他这样的例子吗?

4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?

5、乘法结合律有什么作用。

6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的.另一个规律吗?

7、这组算式发现了什么?

二、 小组合作学习

根据自学指导,交流汇报,验证。

1、小组讨论乘法的结合律、结合律用字母怎样表示。

2、各小组展示自己小组记定律的方法。

3、分别说说是用什么方法记住这些运算定律的。

4、讨论为什么要学习运算定律。

先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

三、 交流汇报,集体订正

四、 当堂训练

1、下面的算式用了什么定律

(60×25)×8=60×(25×8)

2、 27/2—4 P25/做一做2

3、在□里填上合适的数。

30×6×7 = 30×(□×□) 125×8×40 =(□×□)×□

推荐阅读

上一篇:比亚迪检测员试用期总结合集 下一篇:钻探工作总结分析报告8篇
back_img
推荐标签