【#实用文# #初二数学教案合集9篇#】教案课件是老师需要精心准备的东西,这就要老师好好去自己教案课件了。老师上课要根据教案课件来实施。今天分享给大家一篇关于“初二数学教案”的新鲜文章,我们希望能为您提供更多的参考!
初二数学教案 篇1
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2. 看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法 例题
1.因式分解的定义
2.提公因式法
初二数学教案 篇2
2.完全平方公式的几何解释.
二、重点难点:
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
初二数学教案 篇3
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?
学生观察、思想、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.
③邻补角是互补的两个角,互补的两个角也是邻补角?
5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
【学习目标】:
1.通过探究两个三角形具备三个条件两边及其夹角对应相等,得到 三角形全等的另一判定方法。
2.能初步应用“边角边”条件判定两个三角形全等.
通过上节课的学习,我们已经知道把两根木条的一端用螺栓固定在一起,连结另
两个端点所成的三角形不能唯一确定。
例如,图中ΔABC与ΔAB'C不是全等三角形。
但如果把另两个端点也用螺栓固定在第三根木条上,那么构成的三角形的形状、
大小就完全确定。
现在我们考虑这样的问题:如果将两木条之间的夹角(即∠BAC)大小固定,那么ΔABC能唯一确定吗?
让我们动手做一做:用量角器和刻度尺画ΔABC,使AB=4cm,BC=6cm,∠ABC=60º.将你画出的三角形和其他同学画的三角形 进行比较,它们能互相重合吗?由此你得 到了什么结论?
一般地,有两边和这两边的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)。
如图,若∠ABC=∠A'B'C',AB= A'B',BC=B'C',则ΔABC≌ΔA'B'C'。
例1:如图,为了测出池塘两端A,B的距离,小红在地面上选择了点O,D,C,使OA=OC,OB=OD,且点A,O,C和点B,O,D都在一条直线上。
小红认为只要量出DC的距离,就能知道AB的距离。
你认为正确吗?请说明理由。
1、如图,把两根钢条AA',BB'的中点连在一起,可以做成一个测量工件内槽宽的卡钳,在图中,要测量 工 件内槽宽AB,只要测量什么?为什么?
2、如图,点D,E分别在AC,AB上 . 已知AB=AC,AD=AE,则BD= CE.请说明理由(填空)。
3、如图 ,已知AC=BD,∠CAB=∠DBA.请说明下列结论成立的理由:
(1)ΔABC ≌ ΔBAD;(2)BC=AD,∠C=∠D.
4、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求 证:∠A=∠D.
∴BE+EF=CF+
即 =
在△ABF和△D CE中,
∴△ABF≌△DCE( ).
∴ =
5. 如图,已知:AD∥BC,AD=CB,AF=CE.求证:△AFD≌△CEB.
在△ 和△ 中,
∴△ _≌△ (______).
1. 如图,已知:AD∥BC,AD=CB,AE=CF.求证:∠D=∠B.
【课后反思】通过本节课的学习,我的收获和困惑是:
1、学生的认知基础:学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求内角和,这为本节课的学习打下了基础。
因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法。
另外,在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到一定的训练,本节将进一步培养学生这些方面的能力。
2、学生的年龄心理特点:八年级的学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。
活泼好动,思维敏捷,表现欲强,但思考问题不全面。
1、 知识与技能目标:
(2)掌握多边形内角和公式。
2、 过程与方法目标:
(1)掌握类比归纳、转化的学习方法;
(2)培养学生说理和简单推理的意识及能力。
3、情感、态度与价值观目标:
让学生经历探索多边形内角和的过程,进一步发展学生的合情推理意识、主动探究的学习习惯;通过实际情景的引入,让学生进一步体会数学与现实生活的紧密联系。
(2)计算多边形的内角和及依据内角和确定多边形边数。
四、方法和手段:
方法:综合运用自主探究、合作交流、问题解决及研究式学习等方法。
手段:本节课采用多媒体与学科教学整和,以增大课堂信息量,加强直观性及趣味性,有利于学生观察、探究能力的提高。
1、在现实生活中,蕴含着丰富的几何图形。
1、那么什么样的图形是三角形呢?怎样的图形叫做四边形呢?
2、多边形的概念:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形,这样的图形叫做多边形
5、三角形、四边形、五边形、… n边形这些图形,从一个顶点出发的对角线的条数分别是几条?
(1)、我们学过的三角形的内角和是多少呢?
(2)、那么四边形的内角和又是多少呢?你是怎么得到的?
的螺帽的内角和有没有计算方法呢?
归纳为以下几种方法:
方法2、过四边形内任意一点与四边形的各顶点连结,把四边形分成三角形
方法3、在四边形的任一边上取一点,与不相邻的各顶点连结,把四边形分成四个三角形。
方法4、在四边形外任取一点,把这点与各顶点连结。
那么对于n边形猜想一下内角和计算公式是什么?
就我们已求出的特殊多边形的内角和,通过公式再求一次是否相符?
初二数学教案 篇4
教学目标
1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;
2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;
3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.
教学重点和难点
重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.
难点:不等式的解集的概念.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)
2.用不等式表示:
(1)x的3倍大于1; (2)y与5的差大于零;
(3)x与3的和小于6; (4)x的小于2.
(3)当x取下列数值时,不等式x+3
-4,3.5,-2.5,3,0,2.9.
((2)、(3)两题用投影仪打在屏幕上)
一、讲授新课
1.引导学生运用对比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向学生提出如下问题:
不等式x+3
(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3
然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3
最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)
一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.
不等式一般有无限多个解.
求不等式的解集的过程,叫做解不等式.
3.启发学生如何在数轴上表示不等式的解集
我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x
在数轴上表示3的点的左边部分,表示解集x
由于x=3不是不等式x+3
记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.
即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.
此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.
三、应用举例,变式练习
例1 在数轴上表示下列不等式的解集:
(1)x≤-5; (2)x≥0; (3)x>-1;
(4)1≤X≤4; (5)-2
解(1),(2),(3)略.
(4)在数轴上表示1≤x≤4,如下图
(5)在数轴上表示-2
(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)
例2 用不等式表示下列数量关系,再用数轴表示出来:
(1)x小于-1; (2)x不小于-1;
(3)a是正数; (4)b是非负数.
解:(1)x小于-1表示为x
(2)x不小于-1表示为x≥-1;(用数轴表示略)
(3)a是正数表示为a>0;(用数轴表示略)
(4)b是非负数表示为b≥0.(用数轴表示略)
(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)
例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)
解:(1)x
(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)
练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x-1;④x≤-1.
(2)在数轴上表示下列不等式的解集:
①x>3; ②x≥-1; ③x≤-1.5;
④0≤x
(3)用观察法求不等式
(4)观察不等式
自然数解是什么?(表示选作题)
四、师生共同小结
针对本节课所学内容,请学生回答以下问题:
1.如何区别不等式的解,不等式的解集及解不等式这几个概念?
2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.
3.记号“≥”、“≤”各表示什么含义?
4.在数轴上表示不等式解集时应注意什么?
结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.
五、作业
1.不等式x+3≤6的解集是什么?
2.在数轴上表示下列不等式的解集:
(1)x≤1; (2)x≤0; (3)-1
(4)-3≤x≤2; (5)-2
3.求不等式x+2
课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.
在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.
初二数学教案 篇5
1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.
2. 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.
3. 引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.
初二数学教案 篇6
知识技能
1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。
2、探究线段垂直平分线的性质。
过程方法
1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。
2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。
情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。
教学重点
1、轴对称的性质。
2、线段垂直平分线的性质。
教学难点体验轴对称的特征。
教学方法和手段多媒体教学
过程教学内容
引入中垂线概念
引出图形对称的性质第一张幻灯片
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。
幻灯片二
1、图中的对称点有哪些?
2、点A和A的连线与直线MN有什么样的关系?
理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。
我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。
初二数学教案2022篇2
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3、通过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2、0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1、用正确的符号表示下列各数的平方根:
①26 ②247 ③0.2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0.49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0.49,
∴0.49的平方根为±0.7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P.127练习1、2、3、4。
八、板书设计
平方根
(一)概念
(二)性质
(三)开平方
(四)表示方法
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0.9,
便可依次得到精确度
为0.01,0.001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
初二数学教案2022篇3
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短。
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短。
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB。
得出结论:利用展开图中两点之间,线段最短解决问题。在这个环节中,可让学生沿母线剪开圆柱体,具体观察。接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则。
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1、甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走。上午10:00, 甲、乙两人相距多远?
2、如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。
3、有一个高为1、5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1。课本习题1.5第1,2,3题。
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
初二数学教案2022篇4
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:
①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”,经过怎样的平移而形成?
(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
初二数学教案2022篇5
【教学目标】
知识目标:了解中心对称的概念,了解平行四边形是中心对称图形,掌握中心对称的性质。
能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。
情感目标:通过提问、讨论、动手操作等多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
重点:中心对称图形的概念和性质。
难点:范例中既有新概念,分析又要仔细、透彻,是教学的难点。
关键:已知点A和点O,会作点Aˊ,使点Aˊ与点A关于点O成中心对称。
【课前准备】
叫一位剪纸爱好的学生,剪一幅类似书本第108页哪样的图案。
【教学过程】
一、复习
回顾七下学过的轴对称变换、平移变换、旋转变换、相似变换。
二、创设情境
用剪好的图案,让学生欣赏。师:这剪纸有哪些变换?生:轴对称变换。师:指出对称轴。生:(能结合图案讲)。生:还有旋转变换。师:指出旋转中心、旋转的角度?生:90°、180°、270°。
三、合作学习
1、把图1、图2发给每个学生,先探索图1:同桌的两位同学,把两个正三角形重合,然后把上面的正三角形绕点O旋转180°,观察旋转180°前后原图形和像的位置情况,请学生说出发现什么?生(讨论后):等边三角形旋转180°后所得的像与原图形不重合。
探索图形2:把两个平形四边形重合,然后把上面一个平形四边形绕点O旋转180°,学生动手后发现:平行四边形ABCD旋转180°后所得的像与原图形重合。师:为什么重合?师:作适当解释或学生自己发现:∵OA=OC,∴点A绕点O旋转180°与点C重合。同理可得,点C绕点O旋转180°与点A重合。点B绕点O旋转180°与点D重合。点D绕点O旋转180°与点B重合。
2、中心对称图形的概念:如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称(pointsymmetry)图形,这个点叫对称中心。
师:等边三角形是中心对称图形吗?生:不是。
3、想一想:等边三角形是轴对称图形吗?答:是轴对称图形。
平形四边形是轴对称图形吗?答:不是轴对称图形。
4、两个图形关于点O成中心对称的概念:如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称。
中心对称图形与两个图形成中心对称的不同点:前者是一个图形,后者是两个图形。
相同点:都有旋转中心,旋转180°后都会重合。
做一做: P109
5、根据中心对称图形的定义,得出中心对称图形的性质:
对称中心平分连结两个对称点的线段
通过中心对称的概念,得到P109性质后,主要是理解与应用。如右图,若A、B关于点O的成中心对称,∴点O是A、B的对称中心。
反之,已知点A、点O,作点B,使点A、B关于以O为对称中心的对称点。让学生练习,多数学生会做,若不会做,教师作适当的启发。
做P106例2,让学生思考1~2分钟,然后师生共同解答。
(P106)例2 解:∵平行四边形是中心对称图形,O是对称中心,
EF经过点O,分别交AB、CD于E、F。
∴点E、F是关于点O的对称点。
∴OE=OF。
四、应用新知,拓展提高
例 如图,已知△ABC和点O,作△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称。
分析:先让学生作点A关于以点O为对称中心的对称点Aˊ,
同理:作点B关于以点O为对称中心的对称点Bˊ,
作点C关于以点O为对称中心的对称点Cˊ。
∴△AˊBˊCˊ与△ABC关于点O成中心对称也会作。解:略。
课内练习P110
小结
今天我们学习了些什么?
1、中心对称图形的概念,两个图形成中心对称的概念,知道它们的相同点与不同点。
2、会作中心对称图形,关键是会作点A关于以O为对称中心的对称点Aˊ。
3、我们已学过的中心对称图形有哪些?
作业
P110 A组1、2、3、4,B组5、6必做C组7选做。
初二数学教案 篇7
一、学习目标
1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提问:
①说说你是怎样计算的;
②还有什么发现吗?
四、精讲精练
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
初二数学教案 篇8
学习目标:
1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;
1、 思考下列各题,你能利用平行线性质公理解决它们吗?
2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。
(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2
由此得平行线性质定理1:
(2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°
2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。
1、两直线平行的性质公理及两个性质定理;
(2)夹在两平行线之间的平行线段相等;
(3)两条平行线间的距离处处相等;
(4)经过直线外一点,有且只有一条直线和已知直线平行;
(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补
初二数学教案 篇9
一、教学目标
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:
1、重点:认识中位数、众数这两种数据代表
2、难点:利用中位数、众数分析数据信息做出决策。
3、难点的突破方法:
首先应交待清楚中位数和众数意义和作用:
中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的`步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。
三、例习题的意图分析
1、教材P143的例4的意图
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)
(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材P145例5的意图
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)
(3)、例5也反映了众数是数据代表的一种。
四、课堂引入
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
五、例习题的分析
教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。