back_img
好工具 >范文 >实用文

分数的解决问题教案实用

2023-12-17 17:04:22 分数解决问题教案 分数教案

【#实用文# #分数的解决问题教案实用#】发现了一些关于“分数的解决问题教案”的好东西,让我们一起来看看吧。作为老师,编写教案和课件是必不可少的任务,如果还没有完成的话,需要注意一下了。教案是加深课程内涵的重要方式。相信这篇文章会成为您的得力助手!

分数的解决问题教案(篇1)

教学目标

1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。

2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。

3、培养学生的知识迁移能力和数学的应用意识。

教学重难点

解答求一个数是另一个数的百分之几的的百分之几的应用题。

教学工具

课件

教学过程

一、复习旧知:

1、某乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?

指名学生回答。

2、某乡去年原计划造林12公顷,实际造林14公顷,实际造林比原计划增加了百分之几?

指名学生回答。

二、相互合作,探究问题:

(一)初步感知

1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。

2、小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。

(二)共同探讨

1、百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”你能举一些我们日常生活中的百分率的例子吗?

2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。

板书学生所举的百分率及其含义。如:

3、尝试解答例题:

(1)出示课本例1(1)的条件:

例1:六年级有学生160人,已达到《国家体育锻炼标准》的有120人?

(2)学生提出问题,尝试解答

三、运用知识,解决问题:

1、P86的“做一做”第1、2题

2、练习二十的第2题

四、全课总结

1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?

2、学生谈谈今天所学的知识在我们的日常生活中有什么用?

课堂总结

学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。

五、作业:

练习二十的第3、4题。

课后习题

练习二十的第3、4题。

分数的解决问题教案(篇2)

这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生们通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生们思维的广度。

根据教材特点和学生实际我确定本节课的教学目标是:

(1)会分析较复杂的分数除法应用题数量关系。

(2)能列方程正确解答稍复杂的分数除法应用题。

(3)培养学生初步的逻辑思维能力。

让学生充分自主探究、寻求分数除法的解题方法。

课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。

现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9

让学生来说说等量关系,找一找单位“1”

合唱队有女生30人,男生比女生多1/3,女生有多少人?

意图:解决问题中关键是找出题目中关键句的等量关系,因此安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的`分析能较为自然了。

改例题为男生比女生多1/3,女生有多少人?

(补充)男生比女生少1/3,女生有多少人?

比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,因此我们仍然可以顺着刚才的思路,把未知的量设为X,应该说学生是不会有困难的。

例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。

分数的解决问题教案(篇3)

【教学目标】

1.使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。

2.能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。

3.培养学生的知识迁移能力和数学的应用意识。

【重点难点】

1.解答求一个数是另一个数的百分之几的的百分之几的应用题。

2.对一些百分率的理解。

【教具准备】

小黑板、口算卡片。

【参考的有关数据】

稻谷出米率约72% 小麦出粉率约85% 棉子出油率约14%花生仁出油率约40% 油菜子出油率约38% 芝麻出油率约45% 蓖麻子出油率约45%

【教学过程】

第1课时

活动(一)创设情境,提出问题

1.口算比赛:(时间:1分钟)

5/6―1/2 3/10×2/9 1―1/4 4/5÷1/5 4/5÷4/3

5/8+3/4 7/12×4/7 7/8+1/4 1/5+1/3 3/4÷5

想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?)

2.学生根据自己的口算情况口答“做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?”

3.提出问题:能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?

(校对并让学生说说自己的口算情况,错题数占总题数的百分之几”)

活动(二)相互合作,探究问题

初步感知

1.学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。

2.小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。

共同探讨

1.师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”。你能举一些我们日常生活中的百分率的例子吗?

2.学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。

板书学生所举的百分率及其含义。如:

合格的产品数 发芽的个数

产品的合格率= ────────×100% 发芽率= ───────×100%

产品总数 种子的总数

3.尝试解答例题:

(1)出示课本例1和例2的条件:

例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人, ?

例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。 ?

(2)完成第113页的“做一做”

活动(三)运用知识,解决问题

1.口答:

(1)2是5的百分之几?5是2的百分之几?

(2)用 1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。

2.判断:

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。

(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。

(3)25克盐放入100克水中,盐水的含盐率是25%。

3.课堂作业:

1.我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。 ?

2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。

活动(四)全课总结

1.学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?

2.学生谈谈今天所学的知识在我们的日常生活中有什么用?

活动(五)补充练习

1.判断题。

①五年级98个同学,全部达到体育锻炼标准,达标率为98%。

②今天一车间102个工人全部上班,今天的出勤率是102%。

③甲工人加工103个零件,有100个合格,合格率是100%。

2.应用题。

①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率。

②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率。

3.作业:结合练习二十九第6题进行课外调查。

【教学反思】

创造性地使用了教材,使乏味的数学变得生动,鲜活,有意义。。注重了学习方式的多样化,密切了数学与生活的联系。学习效果很好。

分数的解决问题教案(篇4)

活动(一)铺垫复习。

1、说出下面各题中表示单位1的量,并列出数量关系式。

(1)男生人数占总人数的百分之几?

(2)故事书的本数相当于连环画本数的百分之几?

(3)实际产量是计划产量的百分之几?

(4)水稻播种的公顷数是小麦的百分之几?

2、只列式,不计算。

(1)140吨是60吨的百分之几?

(2)260吨是40吨的百分之几?

3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

活动(二)相互合作,探究问题:

1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

2、讨论:

(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?

(2)根据线段图,这道题应该怎样思考、解答?

列式解答:

(14-12)12=2120.167=16.7%

答:实际造林比原计划多16.7%。

3、学生阅读课本,对照例3的解答,质疑问难。

4、想一想,例3还有其他解法吗?

可能出现1412-100%116.7%-100%=16.7%

5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?

(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)

解答过程:

(14-12)14或者:1-1214

=2141-0.857

0.143=1-85.7%

=14.3%=14.3%

答:原计划造林比实际造林少14.3%。

活动(三)、巩固练习

1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。

(1)今年比去年增产百分之几?

(2)男生比女生少百分之几?

(3)一种商品,降价了百分之几?

(4)客车速度比货车慢百分之几?

(5)货车速度比客车快百分之几?

2、判断题。(对的在括号里打,错的打。)

(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。()

(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。()

板书:

分数的解决问题教案(篇5)

1. 根据题意,看图写出代数式。

(1)苹果有x kg,西瓜的质量比苹果重1/4。

西瓜比苹果重kg,西瓜重()kg。

(2)鸡有x只,鸭的只数比鸡少1/3。

鸭比鸡少()只,鸭有()只。

2. 根据题意列出方程。

(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?

(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?

出示例2。

1. 审题。

(1)看例题的插图,理解题目的意思。

复述题意,说说知道了什么,要求什么。

(2)分析题意,说说你对美术小组的人数比航模小组多1/4这一条件的理解。

(航模小组人数看作单位1,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)

(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)

2. 分析、解答。

(1)出示线段图。

(2)说说数量关系。

根据已知条件美术小组的.人数比航模小组多1/4直接得出数量关系:

(3)学生根据得到的数量关系列方程解答。

(4)交流各自的解法。

(5)阅读课本,完成课本上的填空。

3. 改变例2。

出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?

(2)根据图意解答。

(3)启发学生与例2进行比较,说说你发现什么?

(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)

教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。

4. 再次改变例2。

出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?

(1)根据题意改变线段图。

(2)改变方程,解方程。

5. 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

2. 根据条件列方程。

(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?

(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?

(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?

分数的解决问题教案(篇6)

学情分析:

五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。

教学内容分析:

《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

教学目标:

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数的方法解决简单的实际问题。

教学重点:

引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

教学难点:

1、探索分数除以整数的计算方法。

2、能够运用分数除以整数的方法解决简单的实际问题。

创新理念:

“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的'组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。

(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】

(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

2.同桌之间说一说彼此的想法。

3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。

【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

请同学们拿出图(一)来涂一涂。

交流:为什么要这样涂,每份是这张纸的几分之几呢?

还有不同的涂法吗?

能根据这个过程列出一个除法算式吗?

这个除法算式和以前学的除法有什么不同?

【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

请大家在图(二)的上面涂一涂。

同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。

怎样才能算出得数呢?

观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

指生口算。

让学生观察每一组算式,说一说发现了什么?

根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?

【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

9/10÷3015/16÷2014/15÷218/9÷65/6÷15

师:学会了知识就要灵活的运用,这道题你们能填上吗?

学生独立在书上第26页填一填,想一想。

集体订正。

3、解决问题。

师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?

学生在练习本上列式解答。

指生汇报完成情况。

运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

学生谈一谈本节课的收获。

同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

分数的解决问题教案(篇7)

教材分析:

这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。

学情分析:

学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。

教学目标:

1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百

分率的含义。

2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数

的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。

3、培养学生的知识迁移能力和数学的应用意识。

教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。

教学难点:对一些百分率的理解。

教具准备小黑板、口算卡片

参考的有关数据:

稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%

教学过程

教学设计补充(点评)

分数的解决问题教案(篇8)

教材分析:

这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。

学情分析:

学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。

教学目标:

1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百

分率的含义。

2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数

的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。

3、培养学生的知识迁移能力和数学的应用意识。

教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。

教学难点:对一些百分率的理解。

教具准备小黑板、口算卡片

参考的有关数据:

稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%

教学过程

第一课时

活动(一)创设情境,提出问题:补充(点评)

1、口算比赛:(时间:1分钟)

5/6―1/23/102/91―1/44/51/54/54/3

5/8+3/47/124/77/8+1/41/5+1/33/45

想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占

总题数的几分之几?)

2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?

3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)

(将做对的题数占总题数的几分之几改成做对的题

教学设计

校对并让学生说说自己的口算情况,

补充(点评)、

数占总题数的百分之几)

活动(二)相互合作,探究问题:

(一)初步感知

1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。

2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。

(二)共同探讨

1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?

2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。

板书学生所举的百分率及其含义。如:

合格的产品数发芽的个数

产品的合格率=────────100%发芽率=───────100%

产品总数种子的总数

3、尝试解答例题:

(1)出示课本例1和例2的条件:

例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?

例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?

(2)完成第113页的做一做

活动(三)运用知识,解决问题:

1、口答:

(1)2是5的百分之几?5是2的百分之几?

(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。

2、判断:

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。

(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。

(3)25克盐放入100克水中,盐水的含盐率是25%。

3、课堂作业:

1、我国鸟类种数繁多,约有1166种。全世界鸟类约有

8590种。?

2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)

活动(四)、全课总结

1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?

2、学生谈谈今天所学的知识在我们的日常生活中有什么用?

课堂总结

学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。

一、补充练习:

1、判断题

①五年级98个同学,全部达到体育锻炼标准,达标率为98%.

②今天一车间102个工人全部上班,今天的出勤率是102%

③甲工人加工103个零件,有100个合格,合格率是100%.

2、应用题

①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.

②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.

二、作业:结合练习二十九第6题进行课外调查。

分数的解决问题教案(篇9)

【教学内容】

《义务教育课程标准实验教科书数学》六年级上册第85页例1及练习二十一第1~4题。

【教学目标】

1.认识一些常用的百分率,理解它们表示的具体意义。

2.掌握求一个数是另一个数的百分之几的问题的解答方法。

3.感受百分率在生活实际中的应用价值,提高学生分析、解决问题的能力。

【教学重、难点】

掌握求一些常用的百分率的方法。

【教具准备】

课件(或挂图)。

【教学过程】

一、复习准备

出示信息:西大街小学六(1)班有40人,其中男生有24人,女生有16人。

问题:六(1)班男生是全班人数的几分之几?女生是全班人数的几分之几?

学生独立解答,交流解题思路,总结求一个数是另一个数的几分之几用除法解决,关键是先弄清谁和谁相比,谁是单位1。

二、学习新课

1.把复习准备的问题改成:六(1)班男生是全班人数的百分之几?女生是全班人数的百分之几?

(1)学生尝试解决。

(2)让学生交流解决思路,比较改动后的问题与复习中的问题的相同之处和不同之处。

引导学生由相同之处再次深化数量关系和解题思路,明确还是分别用男生人数总人数和女生人数总人数来解答,由不同之处可得知结果要化成百分数。

从而共同揭示出:解决百分数的问题可以依照解决分数问题的方法。求一个数是另一个数的百分之几用除法解决。关键是先弄清谁和谁相比,谁是单位1。

2.学习例1。

出示课件:学生在操场上进行体育测试的情景。

出示两条信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。

小精灵提出一个问题:六年级学生的达标率是多少?

(1)师:对于小精灵给我们带来的这个问题,同学们有什么疑问呢?

可以简单介绍《国家体育锻炼标准》的有关内容,重点解释:达标率是指达标学生的人数占学生总人数的百分之几。(可根据学生已有知识经验,采取生与生、生与师的对话方式)

(2)学生独立解答,再在小组内交流解题思路,让学生总结求达标率的计算公式。

(3)全班交流达标率的计算公式,阅读课本第85页,看看书上的公式与自己总结的有什么不同。讨论:书上的计算公式为什么要乘100%?对此,你有何看法?

3.学习例2。

(1)先让学生观察统计表,你看懂了什么?有什么疑问?(重点理解发芽率的含义)

(2)学生独立列式计算,完成统计表。

(3)分组交流讨论,概括求发芽率的计算公式。

(4)让学生观察填写完整的统计表,解释绿豆的发芽率是97.5%、花生的发芽率是92%、大蒜的发芽率是95%的具体意义。根据这三个信息,你知道了什么?你对这里的同学们所做的种子发芽实验有了怎样的认识?

(5)简单介绍发芽率的应用价值。

4.认识一些常见的百分率。

(1)让学生在认识例1和例2中的达标率和发芽率的基础上,讨论:率指什么?

引导学生理解率是两个数相除的商所化成的百分数,即百分比或百分率。

(2)师指出生活中用百分率进行统计的还很多,师生共同补充常见的一些百分率的例子。

(3)课本第86页做一做的第一题

小组讨论:怎样求出我们所知道的百分率?说一说它们的含义和列出相关计算公式。(采取小组比赛的形式,比一比哪个小组列举的公式多而且合理)

(4)全班反馈交流。

5.深化理解百分率的意义。

(1)课件出示例1的信息:六年级学生的达标率是75%。用1个圆表示六年级学生的总人数。让学生思考如何在图上表示达标率是75%。课件显示这个圆的75%的部分涂上红色。

(2)这个圆的红色部分表示六年级学生的达标率是75%,那么剩下的部分表示什么?引导学生发现剩下的部分表示未达标率是25%。

(3)达标率和未达标率这一组百分率有什么关系?

引导学生发现达标率+未达标率=1,理解只要知道了其中的一个百分率,就能根据它们的关系求出另一个百分率。

(4)你们还能列举出象这样的一组百分率吗?

(5)根据以上的学习,讨论百分率一定小于100%这句话对吗?可让学生根据百分率的意义及一些实例来进行辩论。

(6)讨论:结合具体实例说一说哪些百分率不可能超过100%?哪些可能超过100%?说明了什么?

三、巩固练习

1.课本第86页做一做的第2题。

2.练习二十的第1题。

四、布置作业

课堂作业:练习二十的第2、3、4题。

课外作业:调查一些常见的百分率(课堂上没有涉及的),弄清它们的含义以及计算公式。

五、课堂总结及反思

1.学了这节课你还有什么疑问呢?

2.能谈谈学习后的收获或者是感受吗?(作者:湖北省武汉市西大街小学彭娟)

推荐阅读

小编精心推荐

小学解决问题教案 | 解决问题教学反思 | 解决问题转化教学反思 | 分数教案
上一篇:停产方案3篇 下一篇:2024放假方案(分享4篇)
back_img
推荐标签