五年级数学课件【篇1】
教学目标:
1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;
3、在解决鸡兔同笼的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
教学设计
(一)创设情境
师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?
生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本第80页的情景图)
师:请你猜一猜,图中大约有几只兔子,几只鸡?
生1:我猜大约是7只,兔子5只鸡。
生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知
师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)
师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?
生1:列表可以帮助我们一一举例,从中找出需要的答案。
生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。
师:那么,这三种列表的方法有什么不同呢?
生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。
生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。
师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。
(三)解决问题
师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。
媒体出示两道题
1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。
2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?
(学生练习后,教师组织全班进行交流。交流过程略)
(四)学习总结
师:通过今天的学习,你有哪些收获?
五、教学反思
五年级数学课件【篇2】
注:本节课是我在20xx年上的一堂评比课,20xx年参加调动时又抽到了本节教材的说课,以下是我对本节课进行说课时主要教学流程的简单回顾。
(一)激存疑激思,投石激浪。
1、谈话导入
20xx年北京要举行奥运会了,老师五一期间赶在奥运会开幕之前去北京旅游,想不想随老师一起去看看那里的风光?
2、感知分类
课件出示数据:
(1)故宫南北长961米,东西宽753米。
(2)天坛中心天心石四周有厚约0.9米的围墙。
(3)长城城墙平均高7.8米,最高达14米,顶宽5.8米。
让学生试读这些数,并分类
3、揭示课题
小数到底是怎么产生的呢?它的意义是怎样的?今天就来学习小数的意义。
(二)探自主探究,发现意义。
1、小数的产生。
刚才的0.9米是什么意思?大概有多长,用手比划一下
生:1米不到
出示米尺,得出:在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示。
2、小数的意义。
(1)初步理解一位小数的意义。
0.9米是几分米?怎么想的?
生:把1米平均分成10份,它是其中的9份。
板书:9分米=米=0.9米
0.9这个一位小数你是怎么在米尺上找到的?
生:先找到对应的分数,再想出小数。
再在米尺上找一找其它的一位小数(汇报并适当板书几个)
你有什么发现?板书:一位小数十分之几
师:看来小数与分数很有联系。
(2)深入探究两位、三位小数的意义。
小组活动:(4人小组一把米尺)
出示要求:
A、把1米平均分成100份,每份占它的多少?用分数怎么表示?用小数怎么表示?
B、把1米平均分成1000份,每份占它的多少?用分数怎么表示?用小数怎么表示?
汇报,适当板书几个
(3)归纳小数的意义。
通过刚才的研究,你又有什么发现?
板书:两位小数百分之几
三位小数千分之几
你还能想到什么?万分之几小数的个数是无限的。
它们的计数单位分别是?
弹性方案:生能说出进率,不能说出则教师提问。
(三)练推波助澜,余地生辉。
1、课本51页做一做
汇报后说说空白部分怎么表示
2、生活中的小数(小数的读写法)
课件出示:
A、长颈鹿是世界上最高的动物,高达5.98米
珠穆朗玛峰高达8844.13米
读出这些小数,归纳读法
B、鸵鸟高达二点五米,最高体重可达一百五十五点零二千克。
写出这些小数,归纳写法
3、加大难度(渗透名数化聚)
矿泉水每瓶1元5角=()元
非洲象体重11吨750千克=()吨
鸵鸟蛋重1千克350克=()千克
老师身高1米62厘米=()米
4、畅想0.5
看到0.5你想到了什么?
(四)理回顾总结,意味深长。
今天学到什么知识?小数的知识还有很多奥秘等着我们进一步探索。
五年级数学课件【篇3】
教学内容:苏教版第9册教材第109_111页例1、例2。
教学目标:
1、了解步测方法,学会步测的计算,初步学会通过步测计算求两地的距离。
2、认识数学在生活中的应用,培养学生进行测量的基本技能。
教学准备:量出一段30米的距离,准备步测。电教课件。
教学难点重点:计算步长的方法,步测计算距离。
教学过程:
一、引入课题。
1、怎样就可以知道:从自己的教室走到多媒体教室,大约有多少米?
学生说说测量的方法。
2、如果不用任何测量工具来测量这段距离,可以有什么办法来知道?
学生说一说,教师提出步测
3、板书课题:步测。
4、解释步测的意义。
先让学生说说什么是步测,然后教师再解释。
二、探究新知。
1、用步测的方法来测量教室到多媒体教室有多少米,想一想,准备怎样来做,要知道和准备哪些条件?
2、引导学生展示讨论:根据情况确定讨论形式。
3、汇总讨论结果(板书):
(知道)一步的长度――步长。(知道)走了多少步――步数。(计算)距离
4、形成计算方法。
5、讨论解决步长、步数。
(1)你有什么办法可以知道步长?
学生介绍自己的办法。板书:自己走一步,量一量。
(电脑出示一步长)提示:一步是怎样量的?
教师提示学生提出自己的疑问,组织讨论。
教师补问:这一步应怎样走?在走路的时候,你的步长与你量的步长是不是一样?
(2)用例1介绍测步长的方法。
出示例1。(电脑投影)
你从这道题中学到还可以怎样测自己的步长。
学生说说方法。
学生计算。汇报计算方法和过程。
(3)测一测自己的步长。
指导室外步测活动:
引导学生:让你用例1上介绍的方法测一测自己的步长,你准备怎样做?
介绍室外已量好的一段距离,从一头走到另一头为一次。走三次,记录下每次走的步数,填表内。
电脑出示表格和书上的P111练一练第1题表格。
到室外进行步测活动。
室内计算和汇报(选高个子学生和矮个子学生各一人汇报)
6、学会步测和计算一段实际距离。
(1)出示例2。让学生试做。
(2)让学生说说从例2中学到什么?
(3)让学生提出相关的疑问。
7、小结例1、2的学习。
三、用学到的方法解决下列问题,看看你会不会用步测计算距离。
1、(电脑出示练习题)
练习题:李华沿80米长的直路走了四次,第一次124步,第二次125步,第三次126步。他走一步的平均长度是多少米?照这样的步子,他沿学校大花坛走一圈,走了100步。沿这个大花坛走一圈有多少米?
2、学生独立练习。
3、汇报与核对。
4、让学生提出疑问。
四、课堂总结。
五、课后实践。
1、用步测,计算从多媒体教室到自己教室的距离。
2、在校园内找一个花坛,用步测的方法测量有关数据,算出花坛的面积。
五年级数学课件【篇4】
[教学目的]本节课设计的活动目的是将学生所学的知识进行综合,并能解决一些实际问题。
[教学过程]
1、复习
在开展活动前,先组织学生复习分数的认识与加减法的知识内容。
2、投影出示活动题目
呈现数据表后,可以请学生根据所提供的信息,自己提出数学问题,并能自己解答。
3、组织活动
师按顺序当场组织学生开展调查活动,了解本班学生迎新年的设想(也可让学生以小组的形式进行)。
4、组织长跑接力活动的讨论
这一活动应组织学生开展多次讨论。第一次讨论5个接力点的位置,每个位置的确定都应该是有根据的。第二次讨论位置设计的合理性问题,要让学生说一说不合理的理由。第三次讨论重新设计的问题,在讨论前也可以让学生独立思考,然后再组织讨论新的设计。
第5课时
[教学内容]有奖游戏(第92页)
[教学目的]
1、使学生能用所学知识解决一些实际问题。
2、密铺活动有助于学生进一步体验所学图形的特征,感受数学在实际生活中的应用,发展空间观念。
[教学过程]
1、投影出示有奖游戏图
2、让生表示游戏获奖的可能性
先让生仔细观察投影图,再把每一种游戏获奖的可能性表示出来。
3、学生小组讨论
有奖游戏是一个开放性的活动,学生不一定以中奖的可能性大小来确定参加的游戏,它还包括各人对奖品的喜爱程度。
4、让学生说一说自己愿意参加的项目,并说出理由。
5、布置作业
调查生活中的有奖游戏,并自己设计一个有吸引力的游戏。
五年级数学课件【篇5】
教学目标
1.通过自主探索、合作交流,自主构建、理解小数的除法计算法则,并能正确地进行计算。
2.使学生在经历探索计算方法的过程中,进一步体会转化思想的价值,感受数学思考的严谨性。
3.通过学习活动,培养对数学学习的积极情感。
教学重难点:
会笔算除数是整数的小数除法、
教学过程
一、创设情境,设疑导入
谈话:同学们,我们学习了小数的加、减、乘以及小数除以整数的除法,今天我们继续研究有关小数的计算。
(出示场景图)在动物乐园里有两只蜗牛欢欢、乐乐正在树林里游戏呢,我们一起去瞧瞧!(呈现:欢欢每小时爬行3米,一共爬行6.12米;乐乐每小时爬行4.2米,一共爬行7.98米。)
提问:要知道谁爬行的时间少一些?要先求什么?怎样列式呢?
根据学生回答,板书:6.12÷3,7.98÷4.2。
再问:你能估计一下,他们各自的时间大约是多少吗?
谈话:它们爬行的时间到底是多少呢,还需要进行精确的计算。先请大家算出欢欢爬行的时间。
学生练习后,提问:怎样计算除数是整数的小数除法?计算时要注意什么?
谈话:那么,怎样求出乐乐的爬行时间呢?
引导:7.98÷4.2和我们以前学过的小数除法算式有什么不同?
揭示课题:除数是小数的除法。
二、合作交流,探索方法
1.探索计算7.98÷4.2的思路。
除数是小数的除法是我们遇到的新问题,能不能把它转化成我们以前学过的知识来解决呢?先请同学们想一想,然后在小组里互相说一说。
学生在小组里活动,教师巡视。
学生中可能出现以下两种情况:
(1)分别把7.98米和4.2米转化成用“分米”作单位的数量,再进行计算;
(2)分别把7.98米和4.2米转化成用“厘米”作单位的数量,再进行计算。
交流第一种思路时,提问:把“米”作单位的数转化成把“分米”作单位的数,就是把被除数和除数同时乘──10。这样就把除数是小数转化成了怎样的除法?(相机板书:7.98÷4.2→79.8÷42)
>>
交流第二种思路时,提问:把“米”作单位的数转化成“厘米”作单位的数,就是把被除数和除数同时乘──100。这样就把除数是小数的除法转化成了怎样的除法?(板书:7.98÷4.2→798÷420)
讨论:上面的两种思路有什么共同的地方?(板书:除数是小数——除数是整数)
追问:这两种转化都是可以的,这样转化的依据是什么?
小结:在数学学习中当面对一个新问题时,我们往往把新问题转化成会解答的旧问题,从而解决新问题。由此看来,转化是我们解决问题的一种重要的思想方法。
2.探索竖式计算的过程。
通过大家的努力,我们已经把要研究的新问题转化成了自己熟悉的旧问题。那么,怎样用竖式算出结果呢?
提问:如果把7.98÷4.2转化成除数小数的除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的被除数是79.8?(板书)
再问:如果把7.98÷4.2转化成整数除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的除数是420?(板书)
要求:选择一个自己喜欢的一个竖式,算出结果,并和同学交流。
指两名学生板演,评讲并反馈选择每种解法的人数。
提问:转化成798÷420也是可以算的,为什么选择这种转化方法的人很少呢?
小结:请同学们闭上眼睛,我们一起再来把7.98÷4.2竖式的转化、计算过程在眼前展示一遍。你觉得在这个过程中最重要的是什么?
说明:用竖式计算环节,虽然出现了不同的方法,但结果相同。在尊重学生选择的基础上,引导学生通过比较进行算法优化,让学生体会把除数转化成整数的除法算式比较方便。学生在这一过程中,再次体会计算策略,而且经历了由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和算法的切实把握。
三、练习巩固,深化拓展
1.专项练习。
出示:把下列除法式子转化成除数是整数的小数除法,并想一想商的小数点的位置。
>>
让学生说一说每一道题可以转化成怎样的除法算式,商的小数点在哪里。
2.先估再算。
下面各题,请同学们先估一估、再计算,看谁能把每一道题都算对。
出示:
5.76÷1.8= 7.05÷0.94= 0.672÷4.2=
学生练习后,组织反馈。
说明:估算是提高计算正确率的有效方法之一。上面的环节留给学生足够的思维空间,在判断、改错、计算的同时,将估算、验算等方法有机地结合在一起,既有利于培养学生的估算能力、反思能力,获得良好的数感,又有利于学生逐步养成把估算、计算、检验相结合的良好习惯,从而提高计算水平与能力。
4.总结计算方法。
提问:“除数是小数的除法”可以怎样计算?计算时要注意什么?
5.拓展练习。
(1)比一比,看谁算的既快又正确。
0.12÷0.25 0.12÷2.5 0.012÷0.25
提问:你能很快算出上面各题的得数吗?自己先试一试,再把你的算法和同学交流。
学生中可以出现两种算法:① 先用竖式算出第一题的商,再直接写出第二、三题的商;② 把第一题的被除数和除数同时乘4,使除数等于1,并直接用0.12×4算出得数,再直接写后面两题的得数。
着重引导学生理解第二种算法的思考过程,并鼓励学生在计算一些比较特殊的除法算式时,可以根据算式的特点,用比较简便方法进行计算。
小结:计算有时要根据具体问题、题目之间的关系,灵活地进行计算。
说明:在学生理解除数是小数的算理,掌握计算方法之后,安排拓展性练习,引导学生根据具体情况灵活确定计算方法,既有利于培养学生良好的审题习惯和灵活计算的学习品质,又能使不同层次的学生都能得到充分的发展,使计算课充满思维的张力和不断探索的活力。
四、全课小结,回顾反思
提问:这节课你学习了什么?怎样计算除数是小数的除法?为什么要把除数是小数的除法转化为除数是整数的除法?计算时要注意哪些问题?
五年级数学课件【篇6】
教学目的:
1、经历探索2,5的倍数特征的过程,理解2,5的倍数的特征,能正确判个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或偶数。
3、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力。
教学重点:
理解2、5的倍数的特征。
教具准备:
0-9的数字卡片、信封等。
教学过程:
一、揭示课题:
师:这一节课,老师要带领全体学生进行探索活动,探索的知识是2、5的倍数的特征。
板书课题:探索活动(一)--2、5的倍数的特征。
二、探索活动。
(一)活动一:想一想:
1、问:5的倍数有什么特征?在下表找出5的倍数,并做上记号。
(1)师:读一读5的倍数,观察它们有那些特征?
(2)同桌互相说一说5的倍数的特征。给5的倍数做记号。
(3)指名汇报:我的发现:个位是0或5的数都是5的倍数。
2、根据5的倍数的特征判断5的倍数:
师:任意说一个数,学生用抢答的形式来判断。
(二)活动二:试一试:
1、在下面数中圈出5的倍数。
2845538075348995
汇报:你是怎样判断的?
2、在上面表格中找出2的倍数,做
上记号,说一说这些数有什么特征。
3、自学什么叫偶数,什么叫奇数?
(生答:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。)
你说我答:(同桌一人说数,一人判断。)
你任意说一个数,我来判断是奇数还是偶数?
(三)活动三:练一练:
1、把下列数按要求填入圈内。
28354055108495785390
(1)说一说2的倍数有什么特征?5的呢?
(2)填一填:2的倍数有哪些?
5的倍数有哪些?
哪些数既是2的倍数、又是5的倍数?
(2的倍数有:284010847890
5的倍数有:354055109590
既是2的倍数、又是5的倍数:4090)
2、食品店云赉5个面包,如果每2个装一袋,能正好装完吗?如果每5个装一袋,能正好装完吗?为什么?
(1)师:你是怎样判断的?可以不用计算吗?为什么?
(2)生答:根据2和5的特征来判断,85的个位不是偶数所以不能装完,85的个位是5,所以能装完。
(四)活动四:数学游戏:
1、每人准备:0-9的数字卡
2、师说要求,生摸。
问:摸出几可以和5组成2的倍数
摸出几可以和5组成5的倍数?
3、同桌合作:
一人说要求,一人按要求摸数。
三、总结。
谁能谈谈通过这节课的学习,你有什么感受?
板书设计:
课题:探索活动(一)2,5的倍数的特征
个位上是0或5的数是5的倍数。
个位上是0、2、4、6、8的数是2的倍数。
2的倍数有哪些?5的倍数有哪些?哪些数既是2的倍数、又是5的倍数?
2的倍数有:284010847890
5的倍数有:354055109590
既是2的倍数、又是5的倍数:4090
v