【#实用文# #圆与圆的位置关系课件10篇#】课程计划资料是教师必不可少的材料,因此在编写时老师们需要花费一些时间。教案是教师进行教学设计和理论补充的强大工具,能够帮助教师有效地进行教学。那么,一个理想的教案课件应该具备什么特点呢?请阅读以下栏目小编为您搜集的关于"圆与圆的位置关系课件"的信息,您可以将您的家庭健康计划与朋友分享,他们会对此表示感激!
圆与圆的位置关系课件 篇1
学科(版本)北京版数学章节第五单元《圆》学时1年级六年级教材分析
圆是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。研究两个圆的位置关系,既要掌握画圆的方法,还要明白通过画出对称轴给不同的情况进行分类,最后要探索当圆的大小位置各不相同时,对称轴的情况也不相同,从而培养学生的空间观念.学习者特征分析
本班同学对于圆有一定的认识,对于两个圆的位置关系有初步的了解,但是真正做到根据对称轴的条数不同进行分类没有了解,尤其是对于三个圆的分析不清楚.教学目标
1能够准确画出两个大小不同的圆的位置关系.
2能够准确找出两个大小不同圆的对称轴,并根据对称轴的条数进行分类.
3能够从两个大小不同的圆拓展到两个大小相同的圆或是三个圆
4能够发现生活中的圆形图案
5能够利用圆形设计出美观的图案教学重点难点及解决策略
1能够准确找出两个大小不同圆的对称轴,并根据对称轴的条数进行分类.
2能够从两个大小不同的圆拓展到两个大小相同的圆或是三个圆
3能够利用圆形设计出美观的图案技术准备
白板
教学流程图
通过观看图片发现生活中圆形物体的美----任意两个大小不同的圆会有怎样的位置关系----根据对称轴的条数进行分类----画出两个大小不同圆的对称轴----换成两个大小形同的圆进行分类----任意画三个圆要求只有一条对称轴----任意画三个圆要求有两条对称轴----任意画三个圆要求有无数条对称轴----用圆形设计美观的图案
教学过程:
教学环节教学内容活动设计活动目标媒体使用及分析(交互式电子白板使用功能)一观察导入二思考
三分类
四绘图
五分类
六按要求画圆
七画圆设计图形出示生活中的圆,使同学们认识到圆组成生活中的美的各种图形.
白板出示两个大小不同的圆,同桌间思考这两个圆会有哪些位置关系?
将两个圆不同的位置关系进行分类,说清你分类的理由
画出每组圆的对称轴
根据对称轴的条数进行分类
两个大小不同的圆的位置关系我们已经清楚了,你能按要求画出圆吗?
1画两个大小相同的圆,要求有两条对称轴。
2画三个大小不同的圆,要求他们有无数条对称轴。
利用圆规画圆,设计出美丽的图形视频出示由生活中的圆组成的小动画,使学生们体会到圆在日常生活中的广泛应用,及圆的美.
白板出示两个大小不同的圆
小组间讨论思考这两个圆会有哪几种位置关系,找同学在白板上演示完成。
找两名同学说一说对不同位置关系的分类,说清分类的理由即可,最后引导根据对称轴条数的不同进行分类。
请2-3名同学画出每组圆的对称轴,并与圆进行组合。
请一名同学直接口头表达根据对称轴的条数进行分类,
两个大小不同的圆有怎么的位置关系,我们已经认识了我们一起来回忆。边看视频边起名字。
那你能按要求画出下面的圆吗?
1画两个大小相同的圆,要求有两条对称轴。
2画画三个大小不同的圆,要求他们有无数条对称轴。
圆在我们的生活中随处可见,而且我们的生活离不开圆,你能用圆设计出美丽大方的图案吗?了解到圆在生活中的广泛应用,并能够认识到由圆组成的图形都很美观大方.
通过小组交流两个大小不同的圆的位置关系,同学白板演示,可以很清楚明了的认识圆的位置关系。
通过学生观察并分类,引导出最后的按对称轴的条数进行分类,为下一个环节做铺垫。
完成本节课的重点,找到不同位置的两个圆的对称轴。
更清楚分类结果,同时锻炼学生的表达能力。
通过观看视频,进一步巩固两个圆的位置关系,并给它们起不同的名字。拓展延伸,出示大小相等的两个圆有怎么的位置关系?大小不等的三个圆有怎样的位置关系?
认识圆的作用,利用圆画图。通过白板插入视频,播放.
通过截屏功能认识生活中的圆.
利用白板的拖动复制功能画出许多圆,利用屏幕录制功能将学生的分类记录下来。
通过组合功能将两个圆组合在一起。
通过组合功能将两个圆组合在一起。
视频
圆规画圆
圆规画圆
屏幕录制板书设计
圆与圆的位置关系课件 篇2
九年级数学教案:圆和圆的位置关系优质课教案
教学目标
(一)教学知识点
1.了解圆与圆之间的几种位置关系.
2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.
(二)能力训练要求
1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.
2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.
(三)情感与价值观要求
1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.
教学重点
探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.
教学难点
探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.
教学方法
教师讲解与学生合作交流探索法
教具准备
投影片三张
第一张:(记作§3.6A)
第二张:(记作§3.6B)
第三张:(记作§3.6C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.
Ⅱ.新课讲解
一、想一想
[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?
[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.
[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.
二、探索圆和圆的位置关系
在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?
[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.
[生]我总结出共有五种位置关系,如下图:
[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.
[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;
(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;
(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;
(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;
(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.
[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?
[生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.
[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.
经过大家的讨论我们可知:
投影片(§24.3A)
(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.
(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离,相切
三、例题讲解
投影片(§24.3B)
两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O'是圆心),分隔两个肥皂泡的肥皂膜pQ成一条直线,Tp、Np分别为两圆的切线,求∠TpN的大小.
分析:因为两个圆大小相同,所以半径Op=O'p=OO',又Tp、Np分别为两圆的切线,所以pT⊥Op,pN⊥O'p,即∠OpT=∠O'pN=90°,所以∠TpN等于360°减去∠OpT+∠O'pN+∠OpO'即可.
解:∵Op=OO'=pO',
∴△pO'O是一个等边三角形.
∴∠OpO'=60°.
又∵Tp与Np分别为两圆的切线,
∴∠TpO=∠NpO'=90°.
∴∠TpN=360°-2×90°-60°=120°.
四、想一想
如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2)〕
[师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.
证明:假设切点T不在O1O2上.
因为圆是轴对称图形,所以T关于O1O2的对称点T'也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.
则T在O1O2上.
由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.
在图(2)中应有同样的结论.
通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.
五、议一议
投影片(§24.3C)
设两圆的半径分别为R和r.
(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?
(2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?
[师]如图,请大家互相交流.
[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.
在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2上,所以O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.
圆与圆的位置关系课件 篇3
第一课时2.1.1平面
教学要求:能够从日常生活实例中抽象出数学中所说的“平面”;理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解可以作为推理依据的三条公理.
教学重点:理解三条公理,能用三种语言分别表示.
教学难点:理解三条公理
第二课时2.1.2空间直线与直线之间的位置关系
教学要求:了解空间两条直线的三种位置关系,理解异面直线的定义,掌握平行公理,掌握等角定理,掌握两条异面直线所成角的定义及垂直
教学重点:掌握平行公理与等角定理.
教学难点:理解异面直线的定义与所成角
第三课时2.1.3空间直线与平面之间的位置关系&2.1.4平面与平面之间的位置关系
教学要求:了解直线与平面的三种位置关系,理解直线在平面外的概念,了解平面与平面的两种位置关系.
教学重点:掌握线面、面面位置关系的图形语言与符号语言.
教学难点:理解各种位置关系的概念.
圆与圆的位置关系课件 篇4
教学目标:
1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;
2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;
3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.
教学重点:
两圆的五种位置与两圆的半径、圆心距的数量之间的关系.
教学难点:
两圆位置关系及判定.
(一)复习、引出问题
1.复习:直线和圆有几种位置关系?各是怎样定义的?
(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的
2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?
(二)观察、分类,得出概念
1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:
(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))
(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))
(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))
(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的.点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))
2、归纳:
(1)两圆外离与内含时,两圆都无公共点.
(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一
(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).
教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?
结论:在同一平面内任意两圆只存在以上五种位置关系.
(三)分析、研究
1、相切两圆的性质.
让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:
如果两个圆相切,那么切点一定在连心线上.
这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明
2、两圆位置关系的数量特征.
设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)
两圆外切 d=R+r;
两圆内切 d=R-r (R>r);
两圆外离 d>R+r;
两圆内含 d<R-r(R>r);
两圆相交 R-r<d<R+r.
说明:注重“数形结合”思想的教学.
(四)应用、练习
例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米
求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?
(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?
解:(1)设⊙P与⊙O外切与点A,则
PA=PO-OA
∴PA=3cm.
(2)设⊙P与⊙O内切与点B,则
PB=PO+OB
∴PB=1 3cm.
例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.
求证:⊙O与⊙B相外切.
证明:连结BO,∵AC为⊙O的直径,AC=12,
∴⊙O的半径 ,且O是AC的中点
∴ ,∵∠C=90°且BC=8,
∴ ,
∵⊙O的半径 ,⊙B的半径 ,
∴BO= ,∴⊙O与⊙B相外切.
练习(P138)
(五)小结
知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;
②以及这五种位置关系下圆心距和两圆半径的数量关系;
③两圆相切时切点在连心线上的性质.
能力:观察、分析、分类、数形结合等能力.
思想方法:分类思想、数形结合思想.
(六)作业
教材P151中习题A组2,3,4题.第二课时 相交两圆的性质
教学目标
1、掌握相交两圆的性质定理;
2、掌握相交两圆问题中常添的辅助线的作法;
3、通过例题的分析,培养学生分析问题、解决问题的能力;
4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美.
教学重点
相交两圆的性质及应用.
教学难点
应用轴对称来证明相交两圆连心线的性质和准确添加辅助线.
教学活动设计
(一)图形的对称美
相切两圆是以连心线为对称轴的对称图形.相交两圆具有什么性质呢?
(二)观察、猜想、证明
1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.
2、猜想:“相交两圆的连心线垂直平分公共弦”.
3、证明:
对A层学生让学生写出已知、求证、证明,教师组织;对B、C层在教师引导下完成.
已知:⊙O1和⊙O2相交于A,B.
求证:Q1O2是AB的垂直平分线.
分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B.
证明:连结O1A、O1B、 O2A、O2B,∵O1A=O1B,
∴O1点在AB的垂直平分线上.
又∵O2A=O2B,∴点O2在AB的垂直平分线上.
因此O1O2是AB的垂直平分线.
也可考虑利用圆的轴对称性加以证明:
∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴.
∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O2上.
∴A点关于直线O1O2的对称点只能是B点,
∴连心线O1O2是AB的垂直平分线.
定理:相交两圆的连心线垂直平分公共弦.
注意:相交两圆连心线垂直平分两圆的公共弦,而不是相交两圆的公共弦垂直平分两圆的连心线.
(三)应用、反思
例1、已知两个等圆⊙Ol和⊙O2相交于A,B两点,⊙Ol经O2。
求∠OlAB的度数.
分析:由所学定理可知,O1O2是AB的垂直平分线,
又⊙O1与⊙O2是两个等圆,因此连结O1O2和AO2,AO1,△O1AO2构成等边三角形,同时可以推证⊙O l和⊙O2构成的图形不仅是以O1O2为对称轴的轴对称图形,同时还是以AB为对称轴的轴对称图形.从而可由
∠OlAO2=60°,推得∠OlAB=30°.
解:⊙O1经过O2,⊙O1与⊙O2是两个等圆
∴OlA= O1O2= AO2
∴∠O1A O2=60°,
又AB⊥O1O2
∴∠OlAB =30°.
例2、已知,如图,A是⊙O l、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙O l、⊙O2于M、N。
求证:AM=AN.
证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D,则OlC∥PA∥O2D,且AC=AM,AD=AN.
∵OlP= O2P ,∴AD=AM,∴AM=AN.
例3、已知:如图,⊙Ol与⊙O2相交于A、B两点,C为⊙Ol上一点,AC交⊙O2于D,过B作直线EF交⊙Ol、⊙O2于E、F.
求证:EC∥DF
证明:连结AB
∵在⊙O2中∠F=∠CAB,
在⊙Ol中∠CAB=∠E,
∴∠F=∠E,∴EC∥DF.
反思:在解有关相交两圆的问题时,常作出连心线、公共弦,或连结交点与圆心,从而把两圆半径,公共弦长的一半,圆心距集中到一个三角形中,运用三角形有关知识来解,或者结合相交弦定理,圆周角定理综合分析求解.
(四)小结
知识:相交两圆的性质:相交两圆的连心线垂直平分公共弦.该定理可以作为证明两线垂直或证明线段相等的依据.
能力与方法:①在解决两圆相交的问题中常常需要作出两圆的公共弦作为辅助线,使两圆中的角或线段建立联系,为证题创造条件,起到了“桥梁”作用;②圆的对称性的应用.
(五)作业 教材P152习题A组7、8、9题;B组1题.
探究活动
问题1:已知AB是⊙O的直径,点O1、O2、…、On在线段AB上,分别以O1、O2、…、On为圆心作圆,使⊙O1与⊙O内切,⊙O2与⊙O1外切,⊙O3与⊙O2外切,…,⊙On与⊙On-1外切且与⊙O内切.设⊙O的周长等于C,⊙O1、⊙O2、…、⊙On的周长分别为C1、C2、…、Cn.
(1)当n=2时,判断Cl+C2与C的大小关系;
(2)当n=3时,判断Cl+C2+ C3与C的大小关系;
(3)当n取大于3的任一自然数时,Cl十C2十…十Cn与C的大小关系怎样?证明你的结论.
提示:假设⊙O、⊙O1、⊙O2、…、⊙On的半径分别为r、rl、r2、…、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+ C3=C;(3)Cl十C2十…十Cn=C.
问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转?
提示:1、实验:用硬币作初步实验;结果硬币一共转了4转.
2、分析:当你把动圆无滑动地沿着 圆周长的直线上滚动时,这个动圆是转 转,但是,这个动圆是沿着弧线滚动,那么方才的说法就不正确了.在我们这个题目中,那动圆绕着相当于它的圆周长的 的弧线旋转的时候,一共走过的不是 转;而是 转,因此,它绕过六个这样的弧形的时,就转了 转
圆与圆的位置关系课件 篇5
教学流程
一。情境导入
师:(展示课件)这幅画面中我们看到了圆与圆之间也有着不同的位置关系,今天我们就来探究圆与圆的位置关系。
二。复习引入
师:下面我们先来复习一下点与圆的位置关系和直线与圆的位置关系。
生:完成讲义中的表格。
1、点和圆的位置关系
点和圆的位置关系点到圆心的距离d与半径r的数量关系
2、直线与圆的位置关系
直线和圆的位置关系
公共点数目
公共点名称
直线名称
直线到圆心的距离d与半径r的数量关系
师:在课件中展示答案
3.、探究新知
师:展示课件后说:两圆的位置关系又是如何的呢?
师:看课件中的日食的形成过程,你能抽离出两圆有什么位置关系吗?
生思考,并完成表格:(1)、请认真观察两圆的运动过程,把你观察到的两圆的位置关系的图形画出来。并思考两圆的交点有几种情况?
(2)、如果两圆的半径分别为r1和r2(r1>r2),圆心距为d,在圆和圆的不同的位置关系中,d与r1、r2具有怎样的数量关系?
圆与圆的位置关系图形公共点个数d与r1、r2的关系
4.合作探究
师:紧接着播放课件,让学生进一步感受两圆间的关系。让学生整体感知两圆的公共点的变化情况,并记录下每种情况的两圆间的图形,感受两圆的五种位置关系。
师:刚才的课件或课前热身的操作中的两圆的位置关系,你都看清楚了吗?类似于我们所学过的直线与圆的关系,两圆有以下关系:(展示课件)
师:在相离这一类型中的两种图形一样吗?具体有什么不同?
生:不一样;其中一种图形中的两圆彼此都在各自的外部,而另一种图形中的小圆在大圆的内部。
师:对!所以我们把这两种情况分别叫做外离和内含。类似地,在相切这一类型中的两个图形应分别叫什么呢?
生:外切和内切。
师:很好!因此,严格地说,两圆应有几种位置关系呢?分别是什么?
生:五种,分别是:外离、内含、外切、内切、相交。
师明确:两圆的五种位置关系及其名称、公共点的个数。
师:重新操播课件,看一看在两圆不断接近的过程中,两圆的五种位置关系的先后出现的顺序是怎样的?
生:(动手操作)依次是:外离、外切、相交、内切、内含。
师:想一想,在两圆的变化过程中,除了公共点在变化之外,还有什么也在发生变化?
生:两圆的圆心间的距离也在发生变化。
师:若把连接两圆的圆心的线段长叫做两圆的圆心距,在其变化过程中,两圆的圆心距和两圆的半径有着怎样的关系?
生:(学生在互相交流、讨论)
师:讨论好之后,完成下列表格:
师明确:两圆的五种位置关系及如何用两圆的圆心距d与两圆的半径R、r的数量关系来判别两圆的位置关系。
师:若已知两圆的半径分别为3和5,圆心距d分别等于9、8、6、4、2、1、0时,它们的位置关系分别如何?
生:它们的位置关系分别是:外离、外切、相交、相交、内切、内含、内含(同心圆)。师:已知两圆相切,两圆的半径分别为3和5,求它们的圆心距?
生:圆心距为8或2;因为要分外切与内切这两种情况。
师:已知两圆内切,其中一圆的半径为5,圆心距为2,则另一圆的半径为多少?
生:另一圆的半径为3或7;因为已知的半径5可以是大圆的半径,也可以是小圆的半径,所以同样要分两种情况。
师明确:如何用两圆的圆心距d与两圆的半径R、r的数量关系来判别两圆的位置关系;特别要注意相切时的两种情况。
5.方法指引
⊙O1和⊙O2的半径分别为3cm和4cm,如果d满足下列条件,⊙O1和⊙O2有什么位置关系?请完成表格。
r1r2d两圆的位置关系
438
437
435
431
430.5
方法小结:要确定两圆的位置关系,关键是计算出数据,再把它们。
师:根据这些数据,你们能用一个什么方法将两圆的关系找出来?
生:先完成,再小结方法:要确定两圆的位置关系,关键是计算出数据d、(R+r)和(Rr)这三个量,再把它们进行大小比较。
三。例题学习
如图,⊙O的半径5cm,点P是⊙O外一点,OP=8cm,
(1)以P为圆心作一个圆与⊙O外切,这个圆的半径是多少?
(2)以P为圆心作一个圆与⊙O内切呢?
师:同学们先动手画出这个圆的大概的位置,那么你就能求出这个圆的半径。
生先作,后说:是的,老师这个不难。
师:那第二问你们能试一试吗?
生:可以。
四。变式训练
1、如图,⊙O的半径为4cm,点P是⊙O外一点,OP=7cm,以P为圆心作⊙P与⊙O相切,则⊙P的半径是多少?
2、如图,⊙O的半径为5cm,点P是⊙O内一点,且OP=2cm.
以P为圆心作⊙P与⊙O相切,⊙P的半径是多少?
师:我将例题变条件,大家来尝试一下是否也能完成。
生思考,尝试做。
师:同学们做得不错。下面我们再将后面的课堂练习完成。
五。练一练
1、20xx北京奥运会自行车比赛会标在图中两圆的位置关系是_____。
2、⊙O1和⊙O2的半径分别为2cm和5cm,在下列情况下,分别求出两圆的圆心距d的取值范围:(1)外离______;(2)外切_______;
(3)相交________;(4)内切_______;(5)内含________。
3、判断正误:
(1)、若两圆只有一个交点,则这两圆外切。()
(2)、如果两圆没有交点,则这两圆的位置关系是外离。()
(3)、当O1O2=0时,两圆是同心圆。()
(4)若O1O2=1.5,r=1,R=3,O1O2
(5)、若O1O2=4,且r=7,R=3,则O1O2
4、两圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径为________.
5、已知⊙O1、⊙O2的半径为r1、r2,如果r1=5,r2=3,且⊙O1、⊙O2相切,那么圆心距d=______.
六。学习小结
师:今天这节课我们的同学又从生活中的一些问题抽离出圆的一些知识,掌握得不错,希望大家继续努力。
师接着布置作业。
圆与圆的位置关系课件 篇6
作为一位杰出的老师,就不得不需要编写说课稿,借助说课稿可以让教学工作更科学化。那要怎么写好说课稿呢?以下是小编精心整理的直线和圆的位置关系说课稿,仅供参考,大家一起来看看吧。
一、教学内容分析
1、教材分析:
《圆》这一章,是学生平面几何学习中一个重要的内容,如何在圆的教学中,让学生在直线型图形研究的基础上进一步去体会研究几何图形的思维和方法,深刻领悟几何学的学科观点,有着非常重要的意义。下面是《圆》这一章的框架图:
2、学情分析:
通过前面8章的有关几何的学习,学生已经具备了一定的空间概念和几何直观,具有研究几何图形的思维和方法,有了上节课点和圆的位置关系的铺垫,学生对于探究直线和圆的位置关系并不会感到陌生。
二、教学目标的确定
根据教学内容的特点及学生的实际情况,确定了三个方面的目标:
1、了解直线和圆的三种位置关系,并能简单应用。
2、在探究过程中,提高学生观察、分析、抽象概括的能力,体会数学的基本思想和思维方式。
3、通过具体的`探究活动,认识数学具有抽象、严谨的特点,体会数学的价值。
本节课的教学重点是探究直线和圆的位置关系,并能简单应用;
本节课的教学难点是能够从几何和代数两个角度分析直线和圆的位置关系。
三、教学方法的选择
根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法,教学中使用了几何画板来辅助教学。
四、教学过程的具体设计
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:复习旧知,引入课题;探索归纳,得出结论;拓展运用,巩固新知;归纳小结,提高认知。具体过程如下:
(一)复习旧知,引入课题
提前准备好的学案上,只有一个O,如右图,
按照相应要求作图:
1、作点P
2、过点P作直线
对于问题1的预案:
设计意图:以学生自己动手画图的形式,复习了上节课的知识————点和圆的位置关系,为接下来探究直线和圆的位置关系奠定基础。
对于问题2的预案:
根据直线和圆的位置关系,将上述所有的情况分类:
提问1:分成几类:
提问2:分类的依据是什么
引导学生得出:根据直线和圆的公共点个数,可以把直线和圆的位置关系分为三类:相交、相切、相离,板书相关概念。
(二)探索归纳,得出结论:
刚才是从几何的角度(交点个数)探究直线和圆的三种位置关系,这阶段将从代数角度将直线和圆的位置关系数量化:
借助几何画板,让学生从运动变化的角度去理解直线和圆的三种位置关系:
圆具有轴对称性,直线也具有轴对称性,所以这个组合图形本身就具有轴对称性,其对称轴是过圆心垂直于该直线的,考虑到对称轴与直线的这种垂直关系在运动的过程中具有不变性,所以我们在考虑用数量来刻画直线和圆的位置关系时,要找的几何量一定是和这种垂直关系密不可分的,因此,圆心到直线的距离就会被考虑,然后先让学生猜想,再用几何画板演示加以严谨的证明验证猜想。
本章的研究主线就是圆的对称性,此环节的设计正符合这个研究逻辑,所以我认为此环节的设计是我的一个亮点。
(三)拓展运用,巩固新知:
1、已知圆的直径是13cm,设圆心到直线的距离是d
(1)若d=4。5cm,则直线与圆_______,有______个公共点
(2)若d=6。5cm,则直线与圆_______,有______个公共点
(3)若d=8cm,则直线与圆_________,有______个公共点。
2、已知圆的半径为r,直线上一点到圆心的距离为d,若d=r,则直线与圆的位置关系是()
A、相交B、相切C、相离D、相切或相交
3、在中,,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是多少?
本阶段的教学主要是通过对例题和练习的思考,使学生初步掌握直线和圆的位置关系,并能简单应用。
(三)归纳小结,提高认识:
知识层面上:
直线和圆的位置关系
相交
相切
相离
公共点的个数
2
1
圆心到直线的距离与半径的关系
d d =r d>r 公共点名称 交点 切点 无 直线名称 割线 切线 无 方法层面上: 经历了从不同角度分析问题和解决问题的过程,掌握解决问题的一些基本方法。 布置作业:学练优P59,60
圆与圆的位置关系课件 篇7
《点与圆的位置关系》是人教版九年级上册第二十四章第二节,这一节分为两个部分(即点与圆的位置关系和外接圆、外心),本节课主要学习了点与圆的三种位置关系。在理解圆的定义的基础上展开了点与圆的位置关系教学,通过圆的定义得到了圆内点到圆心的距离都小于半径,圆上点到圆心的距离都等于半径,圆外点到圆心的距离都大于半径,每一个圆都把平面上的点分成三部分:圆内的点、圆上的点和圆外的点。学生理解透彻,掌握较好。
反思教学方法:
反思目标完成情况:
目标1:学生能够清楚的口述点和圆的位置关系以及相对应的点到圆心的距离和半径的大小关系。
目标2:通过动手探究,知道了不在同一条直线上的三个点可以确定一个圆。但有十个同学因动手作图能力差,最后实在别人的帮助下完成的自学任务,还有三个同学竟然没有作图工具。
目标3:掌握了三角形的外接圆和外心概念,都能准确的找见三角形的外心并作出三角形的外接圆。
反思教学设计:
每个环节缺少相对应的练习题是这节课最大的失败之处,因为课前考虑到学生的动手探究能力差,耗时,为了完成教学任务,因此没有设置相应的练习题。特别是在“探究1”环节,学生虽对点与圆的位置关系掌握较好,但在一般的习题中,多考查由“点到圆心的距离”推出“点和圆的位置关系”,反推得难度相对于顺推稍高,所以恐学生解决问题存有困难,且解题过程的书写存有问题,在课后辅导中要进行训练。
圆与圆的位置关系课件 篇8
已有基础:
1、能够根据方向和距离两个条件确定物体的位置。
2、能够根据方向和距离,在图上绘出物体的位置。
3、已能体会到位置关系的相对性。
教学目标:
1、能用语言描述简单的路线图。
2、在合作交流中能绘制简单的路线图。
3、体会路线图在实际生活中的广泛应用。
教学重点:
体会定向运动行走过程中的观测点在不断变化。
教学难点:
根据观测点的变化来重新确定方向标观察物体的位置。
教学准备:
每个(小组)学生一个越野路线图,每人一张白纸(绘图用)
教学过程:
一、山地越野:描述行走路线
小组讨论:
1、作为越野队员我们将怎样确定越野路线?
2、我们是怎样确定方向和路程的?
描述行走路线
为什么要到达一个目标就重新画出方向标?
描述行走路线
一个越野车队,四个赛段的时间分别是15分钟、5分钟、35分钟、5分钟,他们走完全程的平均速度是多少?
10千米
描述行走路线
讨论:
为什么第一赛段的路程与第三赛段路程长短差不多,时间却相差一倍多?车坏了、路是上坡、路上障碍物多、路上休息了一些时间......
二、沙漠驱车越野:绘制简单路线图
根据所给信息画出越野路线
1、在起点的东偏北40方向距离350千米的地方是点1
2、在点1的西偏北25方向距离200千米的地方是点2
3、终点在点2的西偏南20方向距离它300千米的地方
(1)点1的西北方是,终点在起点的方向,点2在起点的方向。
(2)说出具体路线:
从起点出发,先向偏度方向走km到点1,再向偏度方向走km到点2,最后向偏度方向走km到终点。
三、开放题:公园游览
圆与圆的位置关系课件 篇9
教学内容:人教版四年级下册第22页例3,做一做及练习四第1、2题。
教学目标:在确定任意方向的基础上,使学生体会位置关系的相对性。
教学重难点:使学生感受位置关系相对性的重要性。
教法:启发式、演示法、讲解法
学法:分组合作讨论、练习法
教学过程:一、导入新课
同学们在前年--发生了--灾情,我们大家要为--的小朋友献出一份爱心,但是--在我们所居的位置的哪个方位呢?我们又在--哪个方位呢?通过今天所学的内容,同学们回家以后看看好吗?今天我们学习新课:板书课题。
二、出示例3
1、先出示地图在地图上找出上海和北京两地。
2、分小组同自己前面学过的知识说出上海在北京的什么位置,北京在上海的什么位置?
3、学生汇报(1)上海在北京的南偏东的方向上。(2)北京在上海的北偏西300方向上4、组织学生讨论:
为什么在描述两个城市的关系的时候会有两种方式?
结果:因为观测点不同,位置是相对的,方位也是相对的,所以描述的时候会有两种方式。
强调:观测点不同,位置相对,方位相对。
三、反馈练习
小红家
四、小结:通过本节课学习,同学们重点掌握观测点不同位置关系是相对的,方位是相对的。
五、板书设计:
位置关系的相对性
例3北京和上海两地相距大约1067千米。
上海在北京的南偏东约300的方向上。
北京在上海的北偏西约300的方向上
圆与圆的位置关系课件 篇10
教学目标:
(一)教学知识点:
1.了解直线与圆的三种位置关系。
2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。
(二)过程目标:
1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。
(三)感情目标:
1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。
教学重点:直线与圆的位置关系的性质及判定。
教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。
教学过程:
一、创设情境,引入新课
请同学们看一看,想一想日出是怎么样的?
屏幕上出现动态地模拟日出的情形。(把太阳看做圆,把海平线看做直线。)
师:你发现了什么?
(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。)
让学生在本子上画出直线与圆三种不同的位置图。(如图)
师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)
二、讨论知识,得出性质
请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系
设圆心到直线的距离为d,圆的半径为r
让学生讨论之后再与学生一起总结出:
当直线与圆的位置关系是相离时,dr
当直线与圆的位置关系是相切时,d=r
当直线与圆的位置关系是相交时,d
知识梳理:
直线与圆的位置关系图形公共点d与r的大小关系
相离
没有r
相切一个d=r
相交两个d
三、做做练习,巩固知识
抢答,我能行活动:
1、已知圆的`直径为13cm,如果直线和圆心的距离分别为
(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)
师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:
2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?
(1)相交;(2)相切;(3)相离。
师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题:
考考你
3.在Rt△ABC中,C=900,AC=3cm,BC=4cm。
(1)以A为圆心,3cm为半径的圆与直线BC的位置关系是
以A为圆心,2cm为半径的圆与直线BC的位置关系是
以A为圆心,3.5cm为半径的圆与直线BC的`位置关系是。
师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?
(2)以C为圆心,半径r为何值时,⊙C与直线AB相切?相离?相交?
(请同学们思考讨论后,再请个别同学说出答案)
总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的。
比如日出就是r没有变化而d发生了变化。不管哪些变了,哪些没有变,总之d,r和位置关系中,已经两个都可以求第三个量。
四、联系现实,解决实际
在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向。若货船不改变航向,问货船会不会进入暗礁区?
让学生完整解答。
五、归纳总结,形成体系
师:这节课你有何收获?
请个别学生回顾知识,教师再总结完整。
六、布置作业,课后巩固
分层作业:
1.基础题:作业本(2)P21;
2.自选题:如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米。有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?