back_img
好工具 >范文 >实用文

比例的基本性质课件(集合十一篇)

2025-01-03 13:00:16 比例的基本性质课件 浏览:50565

【#实用文# #比例的基本性质课件(集合十一篇)#】作为一名人民教师,精心的课件设计至关重要。课件设计应包括教学目标、重难点、教学方法、教学步骤及时间分配等环节。以下是关于《比例的意义与基本性质》的课件设计,希望能为大家提供帮助。

比例的基本性质课件 篇1

教学过程:

一、创设情境

近段时间,我们接触了大量的比,今天这节课,我们先来请每个同学在草稿本上任写三个比,并算出比值。

请一个同学读读他写的几个比。问:老师也写了一个比(大屏幕出示6:3),说说你的三个比中有没有可以和老师这个比做好朋友的?(说说理由)

每个同学找一找,你们有和老师比值相等的比吗?(教师板书)

同桌找一找,看哪一桌也找到了这样的一对好朋友?(教师板书)

二、学习探究比例的意义

1、观察黑板上的这几组比,有什么共同的特点?(比值相等)

因为它们比值相等,我们可以用等号对他们加以连接,(教师在黑板上板书)

2、师:像这样的等式,我们给它取了一个新名字——比例。谁能说说什么叫比例?

3、数学的语言是非常精练的,打开课本,看看课本中是如何定义的?(学生读,教师板书),教师阐述:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

4、大屏幕出示教师写的另一个比,6:4,谁能为它配上一个好朋友,并写成比例。

5、练习:出示例1(大屏幕)提问,这列火车两次行驶的时间不同,行驶的路程也不相同,但这两次有没有相同的地方?我们能不能这个根据速度相同,写出一个比例。(交流)

6、大屏幕出示课本中的试一试:下面哪一组的两个比可以组成比例。(手指表示)

7、师生小结:如果判断两个比能否组成比例,最关键是看什么?

三、学习探究比例的基本性质

1、比和比例有着密切的联系,你觉得它们有区别吗?

教师小结:“比和比例的意义不同,比例中有两个比,有四个数;比是一个比,有两个数,两个比值相等的比能组成比例。”

2、比有两个数,分别叫做比的前项和比的后项,那么比例的四个数也各有名字,叫什么呢?快速浏览课本67页,找到并读一读,然后把书合拢,看谁最先合拢课本?

教师检查学生对各部分名称的掌握情况,如果写成分数形式,还能说说各自的名称吗?

6:4=3:2 =

3 、探索比例的基本性质

(1)填数。老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?

(2)猜测。学生回答,教师在方框下面板书,如1和24,2和12,……追问:“你有什么发现?把你的发现悄悄地说给同桌听一听。”

(3)验证。大家猜测说“在比例中,两个外项的积等于两个内项的积”,是不是所有的比例都有这样的规律呢,还需要我们验证。

教师组织学生用黑板上的比例和各自写的比例进行验证。

(4)小结。其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。

(5)如果比例写成分数形式,这怎么相乘?

(6)应用比例的基本性质判断下面的比例是否正确?(大屏幕出示)

(7)小结:判断两个比能不能组成比例,既可以通过计算比值来判断,也可以根据比例的基本性质来判断。

大屏幕出示:用你喜欢的方法判断下面的比例是否正确?

四、巩固提升

1、猜猜我是谁?(大屏幕出示)

2、选择题:(大屏幕出示)学生用手指表示正确选项的序号

3、(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)

谁能说出老师的秘诀?

(2)现在轮到我考你:3、4、6、8 4、6、7、9

(学生回答后让他说出判断理由)

(3)请你独立用3、4、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。

4、同学们知道,在一天的`同一时间内,物体越高它在太阳下的影子也就越长,你能运用今天学习的比例知识,想办法算出我们学校旗杆的高度吗?

五、全课小结。

谁能整理一下,这节课我们学习了哪些知识?

六、布置作业

教学目标:

1、使学生理解并掌握比例的意义和基本性质,认识比例的各部分的名称。学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2、培养学生的自学能力、观察能力、判断能力及合作探究能力。

3、经历比例的意义和基本性质形成的过程,体会分析比较、归纳概括、验证的思想方法。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

比例的基本性质课件 篇2

教学内容:

人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1、理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

2、在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3、初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:

理解比的基本性质

教学难点:

正确应用比的基本性质化简比

教学准备:

课件,答题纸,实物投影。

教学过程:

一、复习引入

1、师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2、你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3、你还记得分数的基本性质吗?举例说明。

设计意图:

影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1、师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2、学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3、根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

设计意图:

比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1、教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2、集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3、全班验证。

比例的基本性质课件 篇3

一、教学目标

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

二、教学重点

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

三、教学准备

课件、正方形的纸

四、教学设计过程

(一)迁移旧知.提出猜想

1、回忆旧知

根据“288÷24=12”填空

28.8÷2.4=

2880÷240=

2.88÷0.24=

0.288÷()=12

被除数÷除数=()

说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

学习提示

A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

B、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

C、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

D教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

(三)练习升华

1、填空

2、下面算式对吗?如果有错,错在哪里?

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

(四)作业

教材59页第9题。

(五)思维拓展

(六)总结延伸

师:这节课你有什么收获?

六、板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

比例的基本性质课件 篇4

教学目标:

1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

教学重点:

理解比例的意义和基本性质,能正确判断两个比能否组成比例。

教学难点

自主探究比例的基本性质。

教学过程

一、导入

1、谈话

师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

生1:比的意义。

生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

生3:比的前项除以后项,所得的商就是比值。

(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)

二、合作探究,学习新知

1、比例的意义

师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

生:比例?(书:课题比例)

师:看到这个课题你想知道什么?

(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)

生:什么叫比例呢?

生:(书)表示两个比相等的式子叫做比例。

师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)

师:你也能举出一个这样的`例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?

(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

师:通过以上练习,你认为这句话中哪些词最重要?为什么?

生1:两个比,不是一个比

生2:相等,这个比必须相等

生3:式子,不是两个等式是式子。

师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

(1)0、8:0、3和40:15

(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15

(4)3/18和4/24

(学生独立判断,师巡视指导,然后汇报)

师:先说能否组成比例,再说明理由,生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。

同理教学:(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

师:怎样改能使它组成比例呢?

生:4:8=15/2:15或8:2=15:15/4

同理教学(4)3/18和4/24

师:像3/18和4/24是比例吗?

师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?

2、认识比例各部分的名称。

师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?

生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)

师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

生:2和32是它的内项,16和4是它的外项。

师:请同学们快速抢答老师指的数是比例的外向还是内项。

生:(激烈抢答):外项

师:同学们反应真快,分数的形式中哪些是比例的项呢?

生:2和32是内项,16和4是外项。

师:老师指分数比例学生抢答。

3、探索比例的基本性质。

师:同学们学得真不错,敢不敢和老师来个比赛?

生:(兴趣高涨):敢!

师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

师:谁来。

生1:4:5,生2:8:9不能组成比例。

生:对。

师:服气吗?不服气咱们再来一次,生1:1、2:1、8,生2:3:5

师:不能。对吗?

生:对。

师:老师又赢了,这回服气了吧。(学生点头)

师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?

生:想。

师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

1、可以通过观察、算一算的方法进行研究。

2、你能得出什么结论?)

师:现在请将你的发现在小组里交流一下,看看大家是否同意。

(学生讨论)

师:哪个小组愿意将你们的发现与大家分享?

生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

师:有道理,不错,还有其他发现吗?

生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。

师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)

师:这是两个外项的积,(师板书:两个外项的积)

(学生板书:16×4=64)

师:这是两个内项的积,(师板书:两个内项的积)

师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

师:其他组的同学同意他们这个结论吗?

生:同意。

(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)

师:真的所有的比例都是这样吗?怎么验证?

生:可以多举几个例子看看。

师:这是个好建议,那快点行动吧。(学生独立验证)

生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、

生:我也同意,我用的.是10:5=2:1,来验证,我发现10×1=10,2×5=10、

师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。

4、比和比例的区别

师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)

师:哪一组的代表来说一说。

生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

生:比和比例形式不同。比是一个比,比例是两个比。

生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

三、巩固练习

1、下面每组比能组成比例吗?

(1)6:3和8:5(2)20:5和1:4

(3)3/4:1/8和18:3(4)18:12和30:20

生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

师:怎样改一下使它们能组成比例?

生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

生4:还可以把1:4改成4:1,也能组成比例。

生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

2、填一填。

2:1=4:()1、4:2=():3

3/5:1/2=6:()5:()=():6

师:最后一题还有没有别的填法?

生1:5:(1)=(30):6

生2:5:(30)=(1):6

生3:5:(2)=(15):6

生4:5:(15)=(2):6

师:怎么会有这么多种不同的填法?

生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

3、用2、8、5、20四个数组成比例。

师:你能用这四个数组成比例吗?

师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

生:2和20做外项,8和5做内项时有4种:

2:8=5:202:5=8:20

20:8=5:220:5=8:2

8和5做外项,2和20做内项时也有4种:

8:2=20:58:20=2:5

5:2=20:85:20=2:8

四、课堂总结

师:说一说,这节课你有哪些收获?

生1:知道了比例的意义。

生2:学习了比例的基本性质

生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

师:这节课哪个地方给你留下的印象最深刻?

比例的基本性质课件 篇5

比例的意义和基本性质导学案

教学内容:比例的意义和基本性质教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。教学重点难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

一、趣味导课

1、谈话

师:大家或许曾在电视节目中看到过这样的情节:一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材大约的高度,这是为什么呢?其实是因为在我们人体上存在着许多有趣的比!例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与双臂平伸长度的比大约也是1:1,身高与胸围长度的比大约是2:1……那么这些有趣的比还有什么用处呢?比如:你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。像这些生活中的例子,实际上就是用这些有趣的比去组成一个个的比例来进行计算的。这节课我们就一起来学习“比例的意义和基本性质”。板书课题

2、复习

(1)、什么叫做比?什么是比值?(2)、怎样求比值?(3)、求比值

6:10

9:15

1/2:1/3

6:4

:

学生求出各比的比值后,再提问:观察一下,这几个比的比值有什么特点?因为这两个比的比值相等,所以我们可以用一个符号连起来。板书:像这样表示两个比相等的式子叫做比例

二、探究新知

(一)深入探讨:(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判断两个比能不能组成一个比例,关键要看什么?

(二)做一做出示课件中的做一做

(三)教学比例的基本性质

1、自学比例各部分的名称。

教师:下面我们就来看看组成比例的四个数分别被叫做比例的什么?(学生看书第二页中间内容后回答)随着学生的回答教师出示:

: = 60: 40

└-内项-┘

└------外项-------┘

师:那下面谁能来说一说这个比例当中各部分的名称呢?()

2、研究比例的`基本性质及应用。(1)小游戏——我是诸葛亮

三、系列训练

1、应用比例的意义和基本性质判断3:4和6:8,:2和7:10能不能组成比例。

先一起做第一个,然后指名回答第二个。

2、把下面的等式改写成比例:(能写几个写几个)16 × 3 = 4 × 12学生写后根据学生回答教师板书:16:4=12:3

4:16=3:12 16:12=4:3

4:3=16:12 3:4=12:16

12:16=3:4 3:12=4:16

12:3=16:4

四、总结归纳

1、“比”和“比例”两个概念有什么区别?引导学生从意义上、项数上进行对比。

最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

2、比例的基本性质是什么?应用比例的基本性质可以做什么?课堂总结:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。大家可以想想这句话的意思来联想一下“解比例”的做法。

板书

比例的意义和基本性质

表示两个比相等的式子:=10:6第一种—— 12:16=112 :2 16:4=20 : 5因为16×5=80 4×20=80所以16:4=20:5

第二种—— 3:4和6:8

因为3×8=24 4×6=24 3×8=4×6

所以3:4 = 6:8

比例的基本性质课件 篇6

教学内容:

九年制义务教育小学数学教材第十二册第1、2页,练习一第1——3题。

教学目标:

1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2、认识比例的各部分的名称。

3、培养学生的观察能力、判断能力。

学法引导:

引导学生观察、讨论、试算,探究比例的意义和比例的性质。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教学步骤:

一、铺垫孕伏

师:同学们,今天我们数学课上有很多有趣的问题等你来解决,希望大家努力。我们首先来解决两个问题。

(一)(出示):

1、王艳在文具店里用1 5元买了3本练习本,李丽用2 5元买了5本,谁买的本子便宜些?

(二)反馈:

(1)谁买的本子便宜些?能简单地说说你的理由。

(2)还有别的.方法吗?

(3)这两个比可以用一个什么符号将它们连起来?为什么?

(三)(出示):2、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米,说出旗杆和香樟树与各自影长的比。(8:5 120:75)

这两个比能用一个等号连接起来吗?为什么?

二、探究新知。

(一)比例的意义。

1、老师:像1 5:3=2 5:5 ;8:5=120:75这两个式子,我们给它起了个新名字——比例。那么你能说说什么是比例吗?

2、得出结论:表示两个比相等的式子,叫做比例。(板书课题:比例的意义)

3、完成“做一做”。

下面哪组中的两个比可以组成比例?把组成的比例写出来。(见书上“做一做)

4、试一试,5:8 1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

5、反馈:(1)你给5:8找的朋友是( ),组成的比例是( ),向大家介绍你用了什么方法找到的。

(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

6、师生小结:如果判断两个比能否组成比例,最关键是看什么?

(二)比例的基本性质。

1、认识比例各部分的名称。

(1)自学课本。

前几节课上,我们已经知道 ,比中两个数分别叫做比的前项和后项。今天学习的比例中的四个数也有新名字,想知道吗?请看课本第二页是怎样给它们取名的。

(2)反馈:让学生看下面这些比例,说出它的外项和内项各是多少。

4 5:2 7=10:6 6:10=9:15

: =6:4 0 6:0 2=:

2、探究比例的基本性质。

(1)比例中的内项和外项还有一个有趣的规律,请你们以1 5:3=2 5:5和8:5=120:15为例,分别算出它们的内项和、差、积、商与它们的外项和、差、积、商,看看你能发现什么?

(2)学生汇报:

我发现在这两个比例里,两个外项的积都等于两个内项的积。

(3)查一查:你随便找几个比例,看一看这些比例中有没有这个有趣的现象?

(学生合作学习,汇报交流,得出结论)

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

(板书课题:加上“和基本性质”,使课题完整。)

3、练一练。

(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)

谁能说出老师的秘诀?

(2)现在轮到我考你:4、3、6、8 6、9、4、7

(学生回答后让他说出判断理由)

(3)请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。

(4)阅读教科书第1——2页的内容并填空。

三、全课小结。

这节课我们学会了什么?

四、随堂练习

1、说一说比和比例有什么区别。

2、练习一第2、3题。

比例的基本性质课件 篇7

一、说教材

1、教学内容:

《比例的意义和基本性质》是人教版第十二册第三单元第一二课时的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:

根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。

(一)复习导入

让学生根据所给信息写出两个比。目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。

(二)教学新课

分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。

第二部分:在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。

在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

(三)巩固练习

在巩固练习环节中,第1题是三个判断题,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。

教学反思

有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,知道了比例从生活中来,从而进一步认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。

一、创设探究空间,经历探索过程

我大胆地组织学生探究比例的基本性质,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,而是大胆放手,用四个数组成等式这一开放练习产生新鲜有用的教学资源,我通过引导让学生展开讨论,进行有效的探究,体验了探究的成功。

二、找准知识与生活的契合点,学以致用

为了充分体现数学知识与现实生活的联系,在课的最后我安排了与生活联系的数学问题,让学生来测测我们学校的旗杆的高度,把数学和实际紧密地联系起来,这样既渗透了学数学用数学的教学思想,同时也潜移默化的帮助学生树立了学好文化知识有利于社会发展的意识

比例的基本性质课件 篇8

教学目标:

1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

教学重、难点:

重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学准备:CAI课件

教学过程:

一、复习、导入

1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?

2、 课件显示:算出下面每组中两个比的比值

⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

二、认识比例的意义

(一)认识意义

1、 指名口答上题每组中两个比的比值,课件依次显示答案。

师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

数学中规定,像这样的一些式子就叫做比例。(板书:比例)

3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

(二)练习

1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(1)学生独立完成。

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第一题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、教学比例各部分的名称

(1) 课件出示: 3 : 5

前项 后项

(2) 课件出示:3 : 5 = 18 : 30

内项

外项

(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:3/5=18/30

5、小结、过渡:

刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

三、探究比例的基本性质

1、课件先出示一组数:3、5、10、6

再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

2、 独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6:3=10:5

3、 引导发现规律

(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

(3)学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

4、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组),学生验证。

⑵学生任意写一个比例并验证。

⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

四、 综合练习

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9

1.4 :2 和 5 :10

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ② 20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

1.5:3=( ):4=

12:( )=( ):5

五、全课总结(略)

比例的基本性质课件 篇9

第一课时比例的意义

教学内容:

比例的意义(教材第40页的内容)

教学目标:

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

教学重难点:

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

教具准备:

情景图、多媒体课件、习题卡。

教学过程:

一、导入

出示课题:比例

看到课题你想到了以前学过的什么知识?(生1,生2等回答)

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5

求完比值你觉得哪些比有联系?

【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义

二、揭题示标。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)

【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

本节课我们就来完成这两个目标:

三、自主探索

出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

【设计意图:对学生同时进行思想品德教育和爱国教育】

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)

【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

(二)自学

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享

谁愿意把你的结果和大家分享?师相机板书

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念

擦去开始板书中的“?”并把比例可用分数形式表示板书出来

【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

师:你能说一说组成比例要具备哪些条件吗?

生:…

师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

生:…

【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

四、当堂检测(牛刀小试)

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21

(2)15∶3和60∶12

五、当堂训练:

1、把下面的式子进行归类:

(5)72:8=3X3(6)3.6:6=0.6

比:()

比例:()

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()

(2)、如果两个比可以组成比例,那么这两个比

的比值一定相等。()

(3)、比值相等的两个比可以组成比例。()

(4)、0.1∶0.3与2∶6能组成比例。()

(5)、组成比例的两个比一定是最简的整数比.()

六、拓展提升(思绪飞扬)

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

七、全课总结

今天这节课你有什么收获?

八、课堂作业

第43页第2、3题。

九、抽查清。(每组4号同学完成)

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5

十、板书设计

比例的意义

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

十一、教学反思:

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

比例的基本性质课件 篇10

一、教学目标

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点

重点:理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计

(一)创设情境,提出问题

1. 复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天第二天

运输次数2 4

运输量(吨)16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少?(16 : 2)

货车第二天的运输量与运输次数的比是多少?(32 :4)

货车第二天的运输量与第一天运输量的比是多少?(32 :16)

(师根据学生的回答,将答案一一贴或写于黑板)

2 :16; 4 :32; 16 :2; 32 :4;

16 :32; 2 :4; 32 :16; 4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9 和 9∶12

总结方法:判断两个比能不能组成比例,要看它们的`比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例.

6∶3 和 8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和 6

因为2 × 6 = 3 × 4 所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结

在这节课中你又有什么新的收获?

比例的基本性质课件 篇11

教学内容:教科书第32~34页。

教学目标:理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。

教学过程

一、复习

1.什么叫做比?

2.求出下面每个比的比值。

12∶16 ∶    (板书)

二、教学比例的意义

出示教材第32页的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。

把图变换成四面国旗的画面,每面国旗标注了长和宽的尺寸。

选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

提问:根据求出的比值,你发现了什么?(两个比的比值相等)

教师边总结边板书:因为这两个比的比值相等,所以我们可以写成一个等式:

2.4∶1.6 = 60∶40 或= ←(板书)

像这样由两个相等的.比组成的式子我们把它叫做比例。我们已经知道组成一个比的两个数分别叫做这个比的前项与后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

四人小组讨论,教师巡视,给予指导。

请小组汇报讨论结果,教师根据学生的汇报,将组成的比例分类板书在黑板上。

教师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的比值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。

三、教学比例的基本性质

师:观察黑板上的比例式,你能发现比例的内项与外项之间有什么关系吗?  教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。

推荐阅读

上一篇:2025机关干部个人转正总结(合集7篇) 下一篇:医生下乡个人自我鉴定(经典4篇)
back_img
推荐标签