back_img
好工具 >范文 >实用文

初中数学二元一次方程组教案(推荐七篇)

2024-10-30 13:10:37

【#实用文# #初中数学二元一次方程组教案(推荐七篇)#】作为一名教师,需要进行教学设计的准备工作,通过精心设计可以提高教学质量,实现预期的教学效果。教学设计应该怎么写呢?以下是好工具范文网小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学二元一次方程组教案 篇1

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的`问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

初中数学二元一次方程组教案 篇2

一、说教材分析

1、教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2、教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3、重点、 难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=22

2x+y=40

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。

把两个方程合在一起,写成

x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

初中数学二元一次方程组教案 篇3

教学目标

知识与技能

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

过程与方法

能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组

情感、态度与价值观

培养学生分析问题,解决问题的能力,体验学习数学的快乐。

重点:

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

难点:

选择合适的.方法解方程组;并能把相应问题转化为解方程组。

教学手段

多媒体,小组评比。

教学过程

一、知识梳理

以小组为单位讨论二元一次方程组已经学了哪些知识?

1、什么是二元一次方程?什么是二元一次方程的解?

2、什么是二元一次方程组?什么是二元一次方程组的解?

3、解二元一次方程组的基本思想是什么?消元的方法有哪些?

设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础

二、基础训练

教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。

设计意图:

基础知识达标训练。

教学手段与方法:

毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。

设计意图:

对二元一次方程组解法的灵活应用。

初中数学二元一次方程组教案 篇4

教学目标

知识目标:了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

能力目标:通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

情感目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

教学重点

二元一次方程组的含义。

教学难点

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

教学过程

引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)。

师:同学们能用方程的`方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程。

初中数学二元一次方程组教案 篇5

一.教学目标

(一)教学知识点

1.代入消元法解二元一次方程组.

2.解二元一次方程组时的消元思想,化未知为已知的化归思想.

(二)能力训练要求

1.会用代入消元法解二元一次方程组.

2.了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想.

(三)情感与价值观要求

1.在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心.

2.培养学生合作交流,自主探索的良好习惯.

二.教学重点

1.会用代入消元法解二元一次方程组.

2.了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想.

三.教学难点

1.消元的思想.

2.化未知为已知的化归思想.

四.教学方法

启发自主探索相结合.

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程.二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤.

五.教具准备

投影片两张:

第一张:例题(记作7.2 A);

第二张:问题串(记作7.2 B).

六.教学过程

Ⅰ.提出疑问,引入新课

[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组 成人和儿童到底去了多少人呢?

[生]在上一节课的做一做中,我们通过检验 是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出 是方程组 的解.所以成人和儿童分别去了5个人和3个人.

[师]但是,这个解是试出来的.我们知道二元一次方程的解有无数个.难道我们每个方程组的解都去这样试?

[生]太麻烦啦.

[生]不可能.

[师]这就需要我们学习二元一次方程组的解法.

Ⅱ.讲授新课

[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?

[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:

5x+3(8-x)=34

解得x=5

将x=5代入8-x=8-5=3

答:成人去了5个,儿童去了3个.

[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?

[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个.列一元一次方程设成人去了x个,儿童去了(8-x)个.y应该等于(8-x).而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8-x.

[生]我还发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8-x代替就转化成了一元一次方程.

[师]太好了.我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可.如何转化呢?

[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的.所以将 中的①变形,得y=8-x ③我们把y=8-x代入方程②,即将②中的y用8-x代替,这样就有5x+3(8-x)=34.二元化成一元.

[师]这位同学很善于思考.他用了我们在数学研究中化未知为已知的化归思想,从而使问题得到解决.下面我们完整地解一下这个二元一次方程组.

解:

由①得 y=8-x ③

将③代入②得

5x+3(8-x)=34

解得x=5

把x=5代入③得y=3.

所以原方程组的解为

下面我们试着用这种方法来解答上一节的谁的包裹多的问题.

[师生共析]解二元一次方程组:

分析:我们解二元一次方程组的第一步需将其中的一个方程变形用含一个未知数的代数式表示另一个未知数,把表示了的未知数代入未变形的方程中,从而将二元一次方程组转化为一元一次方程.

解:由①得x=2+y ③

将③代入②得(2+y)+1=2(y-1)

解得y=5

把y=5代入③,得

x=7.

所以原方程组的解为 即老牛驮了7个包裹,小马驮了5个包裹.

[师]在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用其中一个未知数的代数式表示另一个未知数,然后代入第二个未变形的方程,从而由二元转化为一元而得到消元的目的.我们将这种方法叫代入消元法.这种解二元一次方程组的思想为消元思想.我们再来看两个例子.

出示投影片(7.2 A)

[例题]解方程组

(1)

(2)

(由学生自己完成,两个同学板演).

解:(1)将②代入①,得

3 +2y=8

3y+9+4y=16

7y=7

y=1

将y=1代入②,得

x=2

所以原方程组的解是

(2)由②,得x=13-4y ③

将③代入①,得

2(13-4y)+3y=16

-5y=-10

y=2

将y=2代入③,得

x=5

所以原方程组的解是

[师]下面我们来讨论几个问题:

出示投影片(7.2 B)

(1)上面解方程组的基本思路是什么?

(2)主要步骤有哪些?

(3)我们观察例1和例2的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?

(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法)

[生]我来回答第一问:解二元一次方程组的基本思路是消元,把二元变为一元.

[生]我们组总结了一下解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,把它变形为用一个未知数的代数式表示另一个未知数.

第二步:把表示另一个未知数的代数式代入没有变形的另一个方程,可得一个一元一次方程.

第三步:解这个一元一次方程,得到一个未知数的值.

第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.

第五步:用{把原方程组的解表示出来.

第六步:检验(口算或笔算在草稿纸上进行)把求得的解代入每一个方程看是否成立.

[师]这个组的同学总结的步骤真棒,甚至连我们平时容易忽略的检验问题也提了出来,很值得提倡.在我们数学学习的过程中,应该养成反思自己解答过程,检验自己答案正确与否的习惯.

[生]老师,我代表我们组来回答第三个问题.我们认为用代入消元法解二元一次方程组时,尽量选取一个未知数的分数是1的方程进行变形;若未知数的系数都不是1,则选取系数的.绝对值较小的方程变形.但我们也有一个问题要问:在例2中,我们选择②变形这是无可厚非的,把②变形后代入①中消元得到的是一元一次方程系数都为整数也较简便.可例1中,虽然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不简便,有没有更简捷的方法呢?

[师]这个问题提的太好了.下面同学们分组讨论一下.如果你发现了更好的解法,请把你的解答过程写到黑板上来.

[生]解:由②得2x=y+3 ③

③两边同时乘以2,得

4x=2y+6 ④

由④得2y=4x-6

把⑤代入①得

3x+(4x-6)=8

解得7x=14,x=2

把x=2代入③得y=1.

所以原方程组的解为

[师]真了不起,能把我们所学的知识灵活应用,而且不拘一格,将2y整体上看作一个未知数代入方程①,这是一个科学的发明.

Ⅲ.随堂练习

课本P192

1.用代入消元法解下列方程组

解:(1)

将①代入②,得

x+2x=12

x=4.

把x=4代入①,得

y=8

所以原方程组的解为

(2)

将①代入②,得

4x+3(2x+5)=65

解得x=5

把x=5代入①得

y=15

所以原方程组的解为

(3)

由①,得x=11-y ③

把③代入②,得

11-y-y=7

y=2

把y=2代入③,得

x=9

所以原方程组的解为

(4)

由②,得x=3-2y ③

把③代入①,得

3(3-2y)-2y=9

得y=0

把y=0代入③,得x=3

所以原方程组的解为

注:在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,不必强调解答过程统一.

Ⅳ.课时小结

这节课我们介绍了二元一次方程组的第一种解法代入消元法.了解到了解二元一次方程组的基本思路是消元即把二元变为一元.主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程的解.

Ⅴ.课后作业

1.课本习题7.2

2.解答习题7.2第3题

Ⅵ.活动与探究

已知代数式x2+px+q,当x=-1时,它的值是-5;当x=-2时,它的值是4,求p、q的值.

过程:根据代数式值的意义,可得两个未知数都是p、q的方程,即

当x=-1时,代数式的值是-5,得

(-1)2+(-1)p+q=-5 ①

当x=-2时,代数式的值是4,得

(-2)2+(-2)p+q=4 ②

将①、②两个方程整理,并组成方程组

解方程组,便可解决.

结果:由④得q=2p

把q=2p代入③,得

-p+2p=-6

解得p=-6

把p=-6代入q=2p=-12

所以p、q的值分别为-6、-12.

七.板书设计

7.2 解二元一次方程组(一)

一、希望工程义演

二、谁的包裹多问题

三、例题

四、解方程组的基本思路:消元即二元一元

五、解二元一次方程组的基本步骤

初中数学二元一次方程组教案 篇6

一、说教材

首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。

(二)过程与方法

通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。

(三)情感态度价值观

感受数学与生活的密切联系,培养学习数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?

根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》

这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。

(二)新知探索

接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。

活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。

学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。

此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。

教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。

活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。

在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。

师生共同总结出二元一次方程与二元一次方程组的定义。

列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。

活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。

在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。

教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。

得到方程组的解,回归情景得出实际问题的答案。

设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。

(三)课堂练习

接下来是巩固提高环节。

练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。

加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?

设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。

(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:二元一次方程组的定义与二元一次方程组的解。

本节课的课后作业我设计为:

思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。

设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。

七、说板书设计

初中数学二元一次方程组教案 篇7

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?

推荐阅读

小编精心推荐

二元一次方程组教案 | 二元一次方程组课件 | 二元一次方程课件 | 二元方程组教案
上一篇:检讨书格式情侣(推荐十四篇) 下一篇:幼儿园元旦活动美篇内容结束语(必备9篇)
back_img
推荐标签