【#实用文# #绝对值课件汇总#】想要一篇好文章不妨去读读“绝对值课件”,谢谢您的查阅愿您的前行之路更加明亮。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。 学生表现的不同可以帮助教师更好地进行差异化教学。
绝对值课件【篇1】
1.了解的概念,会求有理数的;
2.会利用比较两个负数的大小;
3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
概念,既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非负性,也就是说,任何一个有理数的都是非负数,即无论a取任意有理数,都有。
教材上的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及,通过数轴,这些知识都联系在一起了。此外,0的是0,从几何定义出发,就十分容易理解了。
的定义,的表示方法用比较有理数的大小
用语言叙述的定义,用解析式的形式给出的定义,或利用数轴定义,从理论上讲都是可以的.初学用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为的一种直观解释.
此外,要反复提醒学生:一个有理数的.不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
1.的代数定义
一个正数的是它本身;一个负数的是它的相反数;零的是零.
2.的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的.
3.的主要性质
(2)一个实数的是一个非负数,即|a|≥0,因此,在实数范围内,最小的数是零.
(4)两个相反数的相等.
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:较大的负数一定在较小的负数左边,所以,两个负数,大的反而小.
比较两个负数的方法步骤是:
(1)先分别求出两个负数的;
(2)比较这两个的大小;
(3)根据“两个负数,大的反而小”作出正确的判断.
2.两个正数大小的比较,与小学学习的方法一致,大的较大.
绝对值课件【篇2】
1.知识与技能
会利用绝对值比较两个负数的大小.
2.过程与方法
利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.
3.情感、态度与价值观
敢于面对数学活动中的困难,有学好数学的自信心.
重点:利用绝对值比较两个负数的大小.
难点:利用绝对值比较两个异分母负分数的大小.
(一)创设情境,导入新课
投影 你能比较下列各组数的'大小吗?
(1)│-3│与│-8│ (2)4与-5 (3)0与3
(4)-7和0 (5)0.9和1.2
(二)合作交流,解读探究
讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.
思考 若任取两个负数,该如何比较它的大小呢?
点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?
【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.
注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.
②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.
③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.
绝对值课件【篇3】
一、说教材
(五)教材的地位和作用
《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标
根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:
(一)知识与技能
理解、掌握绝对值的含义,并且会比较有理数之间的大小。
(二)过程与方法
运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。
(三)情感态度与价值观
体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的`确定性。
教学重难点
通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:
重点:绝对值的理解以及有理数的比较
难点:负数的绝对值的理解及比较
二、说学情
以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。
三、说教材
基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。
四、说教法
新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。
五、说教学程序
为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:
(一)情境导入
出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
数轴的两个数值是相反数,是上节课的内容,0到—15°和0到15°的变化温度分别是15°,那么两个相同的变化温度,怎么用数学符号表示出来呢?
(二)新授
1、从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为—a、这三种情况的分析后,学生就充分理解了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。
(三)巩固练习
在PPT上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结
引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业
布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计
为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。
以上就是我说课的全部内容,谢谢!
绝对值课件【篇4】
教学目标:
1、知识与技能:
(1)借助数轴理解相反数的概念,会求一个数的相反数。
(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。
2、过程与方法:
在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。
重点、难点
1、重点:理解相反数的意义,会求一个数的相反数。
2、难点:对相反数意义的理解。
教学过程:
一、创设情景,导入新课
1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。
二、合作交流,解读探究
1、(出示小黑板)
教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?
学生活动:分小组讨论,与同伴交流。
教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。
2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
3、学生活动:
在数轴上,表示互为相反数的两个点有什么关系?
学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4、练习填空:
3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;
学生活动:在练习本上解答,并与同伴交流,师生共同订正。
归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
三、应用迁移,巩固提高
1、课本P10第1题。
2、填空:
(1)xx的`相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。
3、如果一个数的相反数是它本身,则这个数是。
4、若α、β互为相反数,则α+β= 。
5、-(-4)是的相反数,-(-2)的相反数是。
6、化简下列各数的符号
-(-9)=; +(-3.5)= ;
-=;-{-[+(-7)]}= 。
7、若-x=10,则x的相反数在原点的侧。
8、若x的相反数是-3,则;若x的相反数是-5.7,则。
四、总结反思
本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
五、课后作业
课本P13习题1.2A组第3、4题。
绝对值课件【篇5】
化学反应的实质是旧化学键断裂和新化学键生成,从外观上看,所有的化学反应都伴随着能量的释放或吸收、发光、变色、放出气体、生成沉淀等现象的发生。能量的变化通常表现为热量的变化,但是化学反应的能量变化还可以以其他形式的能量变化体现出来,如光能、电能等。
当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为反应在此温度下的热效应,简称为反应热。通常用符号Q表示。
反应热产生的原因:由于在化学反应过程中,当反应物分子内的化学键断裂时,需要克服原子间的相互作用,这需要吸收能量;当原子重新结合成生成物分子,即新化学键形成时,又要释放能量。生成物分子形成时所释放的总能量与反应物分子化学键断裂时所吸收的总能量的差即为该反应的反应热。
对于在等压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能(同时可能伴随着反应体系体积的改变),而没有转化为电能、光能等其他形式的能,则该反应的反应热就等于反应前后物质的焓的改变,称为焓变,符号ΔΗ。
为反应产物的总焓与反应物总焓之差,称为反应焓变。如果生成物的焓大于反应物的焓,说明反应物具有的总能量小于产物具有的总能量,需要吸收外界的能量才能生成生成物,反应必须吸热才能进行。即当Η(生成物)>Η(反应物),ΔΗ>0,反应为吸热反应。
如果生成物的焓小于反应物的焓,说明反应物具有的总能量大于产物具有的总能量,需要释放一部分的能量给外界才能生成生成物,反应必须放热才能进行。即当Η(生成物)
把一个化学反应中物质的变和能量的变化同时表示出来的学方程式,叫热化学方程式。
不仅表明了化学反应中的物质化,也表明了化学反应中的焓变。
①只能写在标有反应物和生成物状态的化学方程式的右边。
若为放热反应,ΔΗ为“-”;若为吸热反应,ΔΗ为“+”。ΔΗ的单位一般为kJ·mol-1。②焓变ΔΗ与测定条件(温度、压强等)有关。因此书写热化学方程式时应注明ΔΗ的测定条件。
③热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,并不表示物质的分子数或原子数。因此化学计量数可以是整数,也可以是分数。
④反应物和产物的聚集状态不同,焓变ΔΗ不同。因此,必须注明物质的聚集状态才能完整地体现出热化学方程式的意义。气体用“g”,液体用“l”,固体用“s”,溶液用“aq”。热化学方程式中不用“↑”和“↓”。若涉及同素异形体,要注明同素异形体的名称。
⑤热化学方程式是表示反应已完成的量。
由于ΔΗ与反应完成的物质的量有关,所以方程式中化学式前面的化学计量数必须与ΔΗ相对应,如果化学计量数加倍,则ΔΗ也要加倍。当反应向逆向进行时,其焓变与正反应的焓变数值相等,符号相反。
将两种反应物加入仪器内并使之迅速混合,测量反应前后溶液温度的变化值,即可根据溶液的热容C,利用下式计算出反应释放或吸收的热量Q。
式中:C表示体系的热容;T1、T2分别表示反应前和反应后体系的温度。
(2)实验注意事项:
①作为量热器的仪器装置,其保温隔热的效果一定要好。
②盐酸和NaOH溶液浓度的配制须准确,且NaOH溶液的浓度须大于盐酸的浓度。为了使测得的中和热更准确,所用盐酸和NaOH的浓度宜小不宜大,如果浓度偏大,则溶液中阴阳离子间相互牵制作用就大,电离度就会减少,这样酸碱中和时产生的热量势必要用去一部分来补偿未电离分子的离解热,造成较大的误差。
③宜用有0.1分度值的温度计,且测量时尽可能读准,并估读到小数点后第二位。温度计的水银球部分要完全浸没在溶液中,而且要稳定一段时间后再读数,以提高所测温度的
以上溶液中所发生的反应均为H++OH-=H2O。由于三次实验中所用溶液的体积相同,溶液中H+和OH-的浓度也是相同的,因此三个反应的反应热也是相同的。
(1)定义:在稀溶液中,酸与碱发生中和反应生成1molH2O(l)时所释放的热量为中和热。中和热是反应热的一种形式。
(2)注意:中和热不包括离子在水溶液中的生成热、物质的溶解热、电解质电离的吸收热等。中和反应的实质是H+与OH-化合生成H2O,若反应过程中有其他物质生成,这部分反应热也不在中和热内。
(1)概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量,叫做该物质的燃烧热,单位为kJ·mol-1。如果是1g物质完全燃烧的反应热,就叫做该物质的热值。
①燃烧热是反应热的一种,并且燃烧反应一定是放热反应,其ΔΗ为“-”或ΔΗ
②25℃,101kPa时,可燃物完全燃烧时,必须生成稳定的化合物。如果该物质在燃烧时能生成多种燃烧产物,则应该生成不能再燃烧的物质。如C完全燃烧应生成CO2(g),而生成CO(g)属于不完全燃烧,所以C的燃烧热应该是生成CO2时的热效应。
燃烧热是以员1mol物质完全燃烧所放出的'热量来定义的,因此在书写表示燃烧热的热化学方程式时,应以燃烧1mol物质为标准,来配平其余物质的化学计量数,故在其热化学方程
了解化学反应完成时产生热量的多少,以便更好地控制反应条件,充分利用能源。
能提供能量的自然资源,叫做能源。能量之间的相互转化关系如下:
从自然界直接取得的自然能源叫一次能源,如原煤、原油、流过水坝的水等;一次能源经过加工转换后获得的能源称为二次能源,如各种石油制品、煤气、蒸气、电力、氢能、沼气等。
②常规能源与新能源在一定历史时期和科学技术水平下,已被人们广泛利用的能源称为常规能源,如煤、石油、天然气、水能等。人类采用先进的方法刚开始加以利用的古老能源以及利用先进技术新发展的能源都是新能源,如核聚变能、风能、太阳能、海洋能等。
③可再生能源与非再生能源可连续再生、永远利用的一次能源称为可再生能源,如水力、风能等;经过亿万年形成的、短期内无法恢复的能源,称为非再生能源,如石油、煤、天然气等。
注意:足够的空气不是越多越好,而是通入量要适当,否则过量的空气会带走部分热量,造成浪费。扩大燃料与空气的接触面,工业上常采用固体燃料粉碎或液体燃料以雾状喷出的方法,从而提高燃料燃烧的效率。
目前主要能源是化石燃料,它们蕴藏有限且不能再生,终将枯竭,且从开采、运输、加工到终端的利用效率都很低。我们目前使用的最多的燃料,仍是化石燃料,它们都是古代动植物遗体埋在地下经过长时间复杂变化形成的,除含有C、H等元素外,还有少量S、N等元素,它们燃烧产生SO2、氮的氧化物,对环境造成污染,形成酸雨。此外,煤的不充分燃烧,还产生CO,既造成浪费,也造成污染。
(2)含义:一定量的可燃物完全燃烧放出的热量,等于可燃物的物质的量乘以该物质的燃烧热。
(3)应用:“热量值与热化学方程式中各物质的化学计量数(应相对应)成正比”进行有关计算。
(4)应用:“总过程的反应热值等于各分过程反应热之和”进行有关计算。
化学反应的焓变只与反应体系的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。如果一个反应可以分几步进行,则各分步反应的反应焓变之和与该反应一步完成时的焓变是相同的,这就是盖斯定律。
①反应热效应只与始态、终态有关,与过程无关。
有些反应很慢,有些反应不容易直接发生,有些反应的产品不纯(有副反应发生),给测定反应热造成了困难。应用盖斯定律,可以间接地把它们的反应热计算出来。
①热化学方程式与数学上的方程式相似,可以移项(同时改变正、负号);各项的系数(包括ΔΗ的数值)可以同时扩大或缩小相同的倍数。
②根据盖斯定律,可以将两个或两个以上的热化学方程式(包括其ΔΗ)相加或相减,从而得到一个新的热化学方程式。
③可燃物完全燃烧产生的热量=可燃物的物质的量×燃烧热。
注:计算反应热的关键是设计合理的反应过程,正确进行已知方程式和反应热的加减合并。
列出方程或方程组计算求解。
②有关热化学方程式及有关单位书写正确。
③计算准确。
(3)进行反应热计算的注意事项:
①反应热数值与各物质的化学计量数成正比,因此热化学方程式中各物质的化学计量数改变时,其反应热数值需同时做相同倍数的改变。
②热化学方程式中的反应热,是指反应按所给形式完全进行时的反应热。
③正、逆反应的反应热数值相等,符号相反。
④用某种物质的燃烧热计算反应放出的总热量时,注意该物质一定要满足完全燃烧且生成稳定的氧化物这一条件。
绝对值课件【篇6】
导学目标
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题绝对值的意义和作用。
导学重点:
正确理解绝对值的概念?
导学难点:
负数大小比较??
导学过程
温故:
1、下列各数中:
+7,—2,,—8?3,0,+0?01,—,1,哪些是正数?哪些是负数?哪些是非负数?
2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
—3,4,0,3,—1?5,—4,,2?
链接:
问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
知新:
1、什么叫绝对值?
在数轴上,一个数所对应的点与的叫做这个数的绝对值.例如+5的绝对值等于5,记作+5=5;—3的绝对值等于3,记作。
2、绝对值的特点有哪些?
(1)一个正数的绝对值是;例如,4=,+7.1=。
(2)一个负数的绝对值是;例如,-2=,-5.2=。
(3)0的绝对值是.
容易看出,两个互为相反数的数的绝对值.如—5=+5=5.
练一练:
1、已知||=5,求的值。
2、填空:
(1)+3的符号是_____,绝对值是______;
(2)—3的符号是_____,绝对值是______;
(3)—的符号是____,绝对值是______;
(4)10—5的符号是_____,绝对值是______?
3、填空:
(1)符号是+号,绝对值是7的数是________;
(2)符号是—号,绝对值是7的数是________;
(3)符号是—号,绝对值是0?35的数是________;
(4)符号是+号,绝对值是1的数是________;
4、
(1)绝对值是的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是—2的数?
3、理解:
若用a表示一个数,当a是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:
(1)如果a>0,那么a=a;
(2)如果a<0,那么a=-a;
(3)如果a=0,那么a=0。
4、比较两个负数的大小
由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小
绝对值课件【篇7】
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程当中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的'绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6, ,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2。4绝对值(1)
针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环。