back_img
好工具 >范文 >实用文

初中数学教学教案设计模板范文(精选13篇)

2024-10-01 12:53:07

【#实用文# #初中数学教学教案设计模板范文(精选13篇)#】作为教育工作者,我们编写教学设计是为了让教学更有成效,更加高效。这对我们的教学工作有着非常积极的帮助。教学设计应该怎么写呢?下面是好工具范文网小编整理的数学教学设计,仅供参考,希望能够帮助到大家。

初中数学教学教案设计模板范文 篇1

学习目标:

1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.

2.认识并能画出平面直角坐标系.

3.能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置

学习重点:根据点的坐标在直角坐标系中描出点的位置。

学习难点:探索特殊的点与坐标之间的关系。

学具准备:坐标纸,三角板

学习过程:

一、学前准备

1、预习疑难: 。

2、填空:

①规定了 的直线叫做数轴。

②数轴上原点及原点右边的点表示的数是 ;原点左边的点表示的数是 。

③画数轴时,一般规定向 (或向 )为正方向。

二、探索与思考

(一)平面直角坐标系

1、观察:在数轴上,点A的坐标为 ,点B的坐标为 。

即:数轴上的点可以用一个 来表示,这个数叫做这个点的 。

反过来,知道数轴上的一个点的坐标,这个点在数轴上的位置也就确定了。

2、思考:能不能有一种办法来确定平面内的点的位置呢?

3、平面直角坐标系概念:

平面内画两条互相 、原点 的数轴,组成平面直角坐标系.

水平的数轴称为 或 ,习惯上取向 为正方向;

竖直的数轴为 或 ,取向 为正方向;

两个坐标轴的交点为平面直角坐标系的 。

4、点的坐标:

我们用一对 表示平面上的点,这对数叫 。表示方法为(a,b).a是点对应 上的数值,b是点在 上对应的数值。

(二)如何在平面直角坐标系中表示一个点

1、以A(2,3)为例,表示方法为:

A点在x轴上的坐标为 ,A点在y轴上的坐标为 ,

A点在平面直角坐标系中的坐标为(2,3),记作:A(2,3)

2、方法归纳:由点A分别向X轴和 作垂线。

3、强调:X轴上的坐标写在前面。

4、活动:你能说出点B、C、D的坐标吗?

注意:横坐标和纵坐标不要写反。

5、思考归纳:原点O的坐标是( , ),

x轴上的点纵坐标都是 , y轴上的横坐标都是 。

横轴上的点坐标为(x,0) ,纵轴上的点坐标为(0,y)

(三)象限:

1、 建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

第二象限(,+) 第一象限(+,+)

第三象限(,) 第四象限(+,)

2、注意:坐标轴上的点不属于任何一个象限

3、你能说出上面例子中各点在第几象限吗?

三、理解与运用

1、在游戏中学数学:以某同学为原点,以他所在的横排为x轴,以这一组为y轴,相邻两个同学之间的距离为单位长度建立坐标系.

(1)下面大家一起找一找自己在坐标系中的坐标分别是什么?

(2)下面这些坐标分别表示谁的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)

2、例 写出图中的多边形ABCDEF各个顶点的坐标.

(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?

(2)线段CE的位置有什么特点?

(3)坐标轴上点的坐标有什么特点?

3、归纳:点的位置及其坐标特征:

①.各象限内的点;

②.各坐标轴上的点;

③.各象限角平分线上的点;

④.对称于坐标轴的两点;

⑤.对称于原点的`两点。

4、对应练习:教材43页1、2题(在书上完成)。

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测:

(一)选择题:

1、若点M(x,y)满足x+y=0,则点M位于( )。

(A)第一、三象限两坐标轴夹角的平分线上; (B)x轴上;

(C) x轴上; (D)第二、四象限两坐标轴夹角的平分线上。

2、第四象限中的点P(a,b)到x轴的距离是( )

(A)a (B)-a (C)-b (D)b

3、点A(-m,1-2m)关于原点对称的点在第一象限,那么m的取值范围是( )。

(A)m(B)m (C)m (D)m0 。

(二)填空题:

1、点P(3,-4)关于原点的对称点的坐标为___________;关于x轴的对称点的坐标为___________;关于y轴的对称点的坐标为____________

2、已知A(a,6),B(2,b)两点。

①当A、B关于x轴对称时,a=_____;b=_____。

②当A、B关于y轴对称时,a=_____;b=_____。

③当A、B关于原点对称时,a=_____;b=_____。

六、解答题

1.在下图中,分别写出八边形各个顶点的坐标.

2.下图是画在方格纸上的某岛简图.

(1)分别写出地点A,L,O,P,E的坐标;

(2)(4,7)(5,5)(2,5)所代表的地点分别是什么?

初中数学教学教案设计模板范文 篇2

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1、菱形的四条边都相等;

性质2、菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:

(1)是一个平行四边形;

(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2四边都相等的四边形是菱形.

五、例习题分析

例1(教材P109的例3)略

例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵四边形ABCD是平行四边形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四边形AFCE是平行四边形.

又EF⊥AC,

∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是().

(A)两条对角线相等(B)两条对角线互相垂直

(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

初中数学教学教案设计模板范文 篇3

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从物理问题中建构反比例函数模型.

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教具准备

多媒体课件.

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

生:(1)解:设I=kR ∵R=5,I=2,于是

2=k5 ,所以k=10,∴I=10R .

(2) 当I=0.5时,R=10I=100.5 =20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律” 有

Fl=1200×0.5.得F =600l

当l=1.5时,F=6001.5 =400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

Fl=600,

l=600F .

当F=400×12 =200时,

l=600200 =3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

Fl=600,F=600l .

而F≤400×12 =200时.

600l ≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)

根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x -0.4成反比例,

∴设y=kx-0.4 (k≠0).

把x=0.65,y=0.8代入y=kx-0.4 ,得

k0.65-0.4 =0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.

生:V和ρ的反比例函数关系为:V=990ρ .

生:当ρ=1.1kg/m3根据V=990ρ ,得

V=990ρ =9901.1 =900(m3).

所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

板书设计

17.2 实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?

设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

Fl=k 即F=kl (k>0且k为常数).

由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m) 10 20 30 40

y(m)

过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx ,

∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

∴函数表达式为y=400x .

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

初中数学教学教案设计模板范文 篇4

一、教学目标:

1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

2、能力目标:

①,在实践操作过程中,逐步探索图形之间的平移关系;

②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

二、重点与难点:

重点:图形连续变化的特点;

难点:图形的划分。

三、教学方法:

讲练结合。使用多媒体课件辅助教学。

四、教具准备:

多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

五、教学设计:

创设情景,探究新知:

(演示课件):教材上小狗的图案。提问:

(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

畅所欲言,互相补充。

课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

课堂练习:

小组讨论。

小组讨论完成。

例子一定要和大家接触紧密、典型。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

六、教学反思:

本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

初中数学教学教案设计模板范文 篇5

①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的`数?

③你怎样认识一次函数和正比例函数的关系?

一个常数b的和即 Y=kx+b 定义:一般地,形

Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当

b=0时,

Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

学生独立

A①②③B①③④C①②④D①②③④

例2、写出下列各题中x与y之间的关系式,并判

解释与应用

断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

初中数学教学教案设计模板范文 篇6

第一单元 负数

第一课时 负数的认识

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重点:负数的意义。

教学难点:负数的意义。

课前准备:

学生搜集生活情境中负数有关资料,如气温、收支,股票涨跌等。 教学课时:1课时

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;银行有存钱和取钱……你能举出一些这样的现象吗?(课件2、3、4、5、6)

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子。(课件7)

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。 ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。

(2)尝试:怎样用数学方式来表示这些相反意义的量呢?(课件8)

请同学们选择一例,试着写出表示方法。

2.认识正、负数。

(1)引入正、负数。(课件9)

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)说一说。(课件10)

生活中还有能用正负数表示的例子吗?

4.进一步认识“0。” (课件11)

以温度计为例,观察“0”的作用?

结论:0既不是正数,也不是负数。(板书)

5、联系生活中的气温;进一步感受正负数的应用。

(1)介绍温度计相关知识。(课件12、13)

(2)一次读出4个城市的温度。(课件14、15、16、17、18)

三、练习应用

(1)辩一辩:

“16℃”和“-16℃”的意义相同吗?(课件19、20、21、22)

(2)做一做:指出下面数中的正负数。(课件23)

(3)填一填:珠穆朗玛峰和吐鲁番盆地海拔高度。(课件24)

四、课堂小结:(课件25)

五、课外拓展:

负数的历史。(课件26、27、28、29、30)

六、板书:

负数的初步认识

像“-6”这样的数叫负数,读作:负六。“-”,叫“负号”。

像“+6”这样的数叫正数,读作:正六。“+”,叫“正号”。也可省略不写。 0既不是正数,也不是负数。

课后反思:

第二课时 比较正数和负数的大小

教学目的:

1.借助数轴初步学会比较正数、0和负数之间的大小。

2.初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1.读数,指出哪些是正数,哪些是负数?

43-85.6 +0.9 -+ 0-82

2.如果+20%表示增加20%,那么-6%表示 。

3.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

二、新授:

(一)教学例3:

1.怎样在数轴上表示数?(1.2.3.4.5.6.7)

2.出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?

(7)练习:做一做的第1.2题。

(二)教学例4:

1.出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2.学生交流比较的方法。

3.通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4.再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5.再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6.总结:负数比0小,正数比0大,负数比正数小。

7.练习:做一做第3题。

三、巩固练习

1.练习一第4.5题。 2.练习一第6题。

3.实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

课后反思:

初中数学教学教案设计模板范文 篇7

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点A(—5,m)在反比例函数图象上,所以,

点A的坐标为。

点A关于x轴的对称点不在这个图象上;

点A关于y轴的对称点不在这个图象上;

点A关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0<x2,试比较y1和y2的大小。< p="">

初中数学教学教案设计模板范文 篇8

一、教学目标

1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.

2.培养学生抽象的数学思维能力.

3.通过例题和习题,训练学生综合解题的能力和计算能力.

4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.

二、重点·难点

1.重点

理解和应用负整数指数幂的性质.

2.难点

理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.

三、教学过程

1.创造情境、复习导入

(l)幂的运算性质是什么?请用式子表示.

(2)用科学记数法表示:①69600

②-5746

(3)计算:①

2.导向深入,揭示规律

由此我们规定

规律一:任何不等于0的数的0次幂都等于1.

同底数幂扫除,若被除式的指数小于除式的指数,

例如:

可仿照同底数幂的除法性质来计算,得

由此我们规定

一般我们规定

规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.

3.尝试反馈.理解新知

例1计算:(1)(2)

(3)

(4)

解:(1)原式

(2)原式

(3)原式

(4)原式

例2用小数表示下列各数:(1)

(2)

解:(1)

(2)

练习:P141 1,2.

例3把100、1、0.1、0.01、0.0001写成10的幂的形式.

由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.

问:把0.000007写成只有一个整数位的数与10的幂的积的形式.

解:

像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.

例4用科学记数法表示下列各数:

0.008、0.000016、0.0000000125

解:

例5地球的质量约是 吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)

解:

(吨)

答:木星的质量约是 吨.

练习:P1421,2.

四总结、扩展

1.负整数指数幂的性质:

2.用科学记数法表示数的规律:

(1)绝对值较大的数,n是非负整数,n=原数的整数部分位数减1.

(2)绝对值较小的数,n为一个负整数,原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)

五、布置作业

P143A组4,5,6;B组1,2,3,4.

参考答案

略.

六、板书设计

投影幕

引入:

例2

例4

例3

例5

例1

练习

练习

初中数学教学教案设计模板范文 篇9

教学内容:

义务教育课程标准实验教科书数学第一册第91~92页

一、教材简析:

本单元主要是使学生结合自己的生活实际学会看整时和半时,初步认识钟面上的时针和分针,本节课是本单元的第一课时,主要是认识钟面上的整时数,先让学生认识时针和分针,再认识钟表(包括电子表)表面上的整时数.

二、教学目标:

知识技能目标:

1.结合生活经验,认识钟面,认识时针和分针,学会看整时。

2.培养学生初步的观察、分析、推理的能力。

过程性目标:

1.通过拨表针、观察等实践活动,让学生体验数学与日常生活的密切联系,体会到学习数学的乐趣,提高学习数学的乐趣,建立学好数学的信念。

2.通过操作、观察、分析、推理等活动,培养学生主动参与探究的精神。

3.能用所学知识,合理安排自己的时间,做时间的主人。

情感目标:

使学生初步建立时间观念,教育学生要从小养成珍惜和遵守时间的好习惯。

教学重点:

正确读写钟表上的整时。

教学难点:

正确迅速说出或拨出钟面上的时间。

教具、学具:

多媒体课件、钟表、

教学过程:

一、引入

猜谜:一匹马儿三条腿,日夜奔跑不喊累,嘀嘀嗒嗒提醒你,时间一定要珍惜。

生异口同声地说:“闹钟”。

师:闹钟有什么作用呢?

生1:可以叫我们起床。

生2:可以告诉我什么时候干什么。

生3:可以告诉我们时间。

师:这节课,我们就一起来学习有关时间的知识。

板书:认识钟表

[评析:抓住学生年龄特征,用学生喜闻乐见的谜语引出钟表,引发学生强烈的兴奋感和亲切感,营造积极活跃、向上的学习氛围,为学习新知创设良好的情境。]

二、 动手操作、交流、探究新知。

1.认识钟面。

请小朋友拿出自己的小闹钟仔细观察,看看钟面上都有些什么,然后小组交流交流。

生:自由观察活动。(师:课件出示4时)

师:谁愿意给大家介绍一下你的钟面上都有些什么?

生1:我的钟面上有三根针,又粗又短的是时针,较粗较细的是分针,那个又长又细的是秒针(师根据学生的回答逐一出示时针、分针及名称。)。

师:这个小朋友知道的可真多,他已经认识秒针了,真了不起,在以后的学习中我们会更一步地认识秒针。钟面上还有什么?

生2:钟面上有12个数。

师:小朋友们观察地真仔细,下面,我们再来观察一下,看看钟面上的时针、分针是怎么走的?(边说边拿实物钟演示)

生:我知道了,钟面上的时针、分针是顺着1、2、3、4、5、6、7、8、9、10、11、12的方向走的。

师:你能照这样的顺序拨一拨小闹钟吗?体验时针、分针是怎么走的。

生:动手拨小闹钟。

[评析:这里让学生亲自动手拨小闹钟,抓住了儿童的心理特点,同时为学生提供了动手实践、自主探索、观察与思考、发现、表达的机会,激发了学生的参与意识和积极性,同时又培养了学生的动手实践能力。]

2.认识整时。

请同学看这个钟面,谁知道现在表示的时刻是几时?(出示2时的钟面)

生:2时。

师:你是怎么知道的?

生1:妈妈教过我。

生2:分针指着12,时针指着2,就是2时。

生3:我是这么想的,分针指着12,时针指着2,这时的时刻就是2时。

师:咱们同学真了不起。那这个时刻又是几时呢?(手指大屏幕的4时)

生:4时。

师:你又是怎么知道的?同桌互相说一说。

生:同桌互相说。

师:请同学看大屏幕,这时的时刻你能马上说出是几时吗?

生:8时。

师:这个时刻我们一般该干什么呢?

生:我们在上课。

生:有时候,晚上的8时,我们在睡觉。

师:时间是宝贵的,我们要珍惜时间,好好学习。

师:你能用一句话说说看整时刻的方法吗?

生:沉默。

师:好,我们小组讨论讨论。

生:展开热烈的讨论。

师:谁愿意把你的方法介绍给大家?

生:分针指着12,时针指着几,这时的时刻就是几时。

师小结:小朋友们说的都很对,是的,分针指着12,时针指着几,这时的时刻就是几时。

师:想不想亲自动手拨一拨小闹钟?

生:想。

师:拨一个8时,看谁拨的又对又快,注意时针、分针转动的方向。

生:动手拨小闹钟。

师:请同学看大屏幕,你拨的和大屏幕上面的一样吗?

师:真了不起,我们再来拨一个3时。

生:拨钟。

师:谁愿意上来展示给大家看,说说你是怎么拨的?

生:积极举手表现自己。教师及时给以奖励。

[评析:教学形式上,重视学生的独立探索和合作交流的有机结合,课堂中让学生根据自己的体验,用自己的思维方式去探究,去发现,去再创造,使每个学生都有一块属于自己思维的开拓区域。]

3.掌握用上午、下午这些词语表示时间。

师:想不到小朋友们的动手能力这么强,下面,我们来看看大家的观察能力怎么样?请大家看你桌上的这张图,你能马上写出钟表显示的时刻是几时吗?比比看谁写的又对又快?

生:独立完成填空,有同学小声说:“怎么两个都一样?”

师:你发现什么了?

生1:两个一样,都是9时。

生2:两个都是9时,但不一样,一个是上午9时,一个是晚上9时。

师:小朋友们观察的真仔细。为什么会有两个9时呢?

生3:我知道,因为一天,时针要走两圈,所以有两个9时。

师小结:小朋友说的真好,对了,一天时针在钟面上要走2圈,所以有两个9时,因此,要准确地表达时刻,还得会用上午、下午这些词语。

[评析:让学生发现、思考、讨论有挑战性的问题,了解时针要在钟面上每天转两圈,所以一天中有两个9时,拓展了学生视野,使所学知识融会贯通,并培养了学生的语言表达能力。]

师:请同学们看大屏幕,你能用一句完整的话说说图中的小朋友在什么时刻干什么吗?

生1:小红7时起床。

生2:早上,妈妈叫小红起床。

生3:小红在早上7时起床。

师:那你是几时起床,又是几时睡觉的?在钟面上拨出来,并同桌互相说一说。

生:活动。

师:我们要合理安排好自己的作息时间,养成按时起床,按时睡觉的好习惯。

师:拨一个你最喜欢的时刻,并说说这个时刻你在干什么?

生:动手拨小闹钟。

师:下面,我们来轻松一下,做做课中操。

[评析:根据儿童已有的生活经验和认知特点,通过一些具体事件如:几时起床,几时睡觉,丰富了学生对时间的感性认识,使学生充分感受时间就在身边的生活中,逐步建立了学生的时间观念,再通过趣味性的练习,动手拨一个自己喜欢的时刻,并说说这个时刻在干什么。既联系了学生生活实际,又突出了应用意识和实践能力的培养。]

4.学习时刻的另一种表示方法

师:在我们日常生活中,除了用这种钟表示时刻外,还能用什么表示时刻呢?

生:用手表

生:用电子表。

(电脑出示3个时刻)

师:请同学们看这三个时刻,你发现了什么?

生1:都表示5时。

生2:一个是钟,一个是手表,一个是电子表。

生3:我发现前两个都是用分针时针表示的,第三个是用电子表显示的。

师:仔细观察,电子表是怎么显示时间的?

生:电子表的表面有两个点,左边是几就表示几时,右边是几,就表示几分。

师:这位小朋友真了不起,我们奖励给他一块奖牌。说的非常好,电子表的表面有两个点,当两个点的左边是几,同时,两个点的右边是两个0,这时的时刻就是几时。

师:像电子表显示的这种表示时刻的方法你还在什么地方见过?

生1:电话显示器上。

生2:电视上。

生3:手机上。

师:你能试着用这种方法表示2时吗?

生:练习。

师:谁愿意上黑板展示自己的写法?

生:积极要求表现自己。

师:(大屏幕显示8时)8时和3时用这种表示方法,又该如何表示呢?

生:在练习本上用第二种表示方法写。

[评析:通过学生观察比较,发现了表示时间的两种方法,再让学生在生活中找寻,为学生再次积累感性认知。]

三、应用新知,巩固发展。

1.师:请同学看大屏幕,时间老人还给我们送来2个钟面,你能准确地说出现在是几时,并说说这时候你该做什么吗?同桌互相说一说。

你能试着用两种方法把这两个时刻表示出来吗?

生:独立完成。

师:请同学仔细观察这两个钟面,看看6时和12时,钟面上的时针和分针有什么特点?

生:6时,时针和分针成了一条线。12时,时针和分针合在一起了。

2.师:猜谜:公鸡喔喔催天明,大地睡醒闹盈盈,长针、短针成一线,请问这时几时整?

生:6时整。

师:谁有补充?

生:早上的6时整。

师:那再过一小时是几时呢?

3.手势游戏:由老师给大家做几个手势,看看哪个小朋友能根据老师的手势马上说出是几时整?(3时、6时、9时、12时)

4.下面,我们来玩个拨钟表的游戏,同桌两人一人在钟面上拨针,另一个人说时刻,交换练习。

5.我们来玩个小品好不好?请几个小朋友上台来做几个动作,你猜他时什么时候做什么事情?用你的小闹钟拨出时刻,谁最先拨好就上好闹钤。

(1) 洗脸:拨的时刻有6时,6时半,7时,9时理由是晚上睡觉前洗脸。

(2) 睡觉:拨的时刻有8时,9时,10时,1时理由是午休。

(3) 读书:拨的时刻有8时,9时,10时。

(4) 吃饭;拨的时刻有7时吃早饭,12时吃午饭。

小结:小朋友们真能干,表演的小品真精彩,拨出的时间也很合理,一节课马上就过去了,时间对于我们每个人来说都很宝贵,我们不但要珍惜时间,还要合理利用时间,准确掌握时间,按时起床,按时睡觉,不浪费时间,做个遵守时间的好学生。能做到吗?

四、全课总结。

能和小朋友共同上一节课,老师感到非常的高兴,那这节课你有哪些收获呢?把你的收获告诉大家好吗?

[总评:充分利用了学具和多媒体教学手段,调动学生多种感官参与学习。让学生在实际中运用所学知识,密切联系实际。体现数学于生活,生活离不开数学。整节课以玩为主线,把教学内容清晰有趣的串了起来,设计新颖。教学过程科学合理,层次分明,层层递进,高潮迭起,教师科学有效地引导,给人一种渐入佳境、耳目一新的感觉。整节课的设计和课堂教学的实施主要体现了以下几点:

1.注重学生数学学习与现实生活的联系,教学中注意创设生活情境,使数学更贴近学生。注意引导学生用数学的眼光去观察和认识身边的各种事物,学会从生活中发现数学问题、提出问题并设法解决问题。

2.强调数学学习的实践性、探索性。教学中设置了许多新颖有趣的实践活动内容,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。

3.教学形式、学习方式灵活多样。在整个教学过程中,教师和学生分享彼此的思考、见解,交流彼此的情感、求得新的发展。凡是学生能独立思考、合作探究发现的老师决不包办代替。做到让学生多思考、多动手、多实践,自主探索、合作学习、师生共同活动相结合,教学形式有分有合,方法多样,学生参与程度高,最大限度地拓宽了学生的思维,使课堂充满生机与活力。

4.评价使课堂教学焕发生命光彩。李老师绝不吝啬对学生的赞扬与激励,教师的一颗爱心使评价焕发出艺术的魅力。

5.整节课收放自如,学生和谐发展。师生角色分明,关系亲切融和。教师给学生创设了一个又一个的情境,引发一环又一环的问题,促使学生层层深入的思考,让学生自觉地、全身心地投入到学习活动中,用心发现、用心思考、真诚交流,时而困惑、时而高兴,在跌宕起伏的情感体验中自主完成对知识的建构。]

初中数学教学教案设计模板范文 篇10

一、教学任务分析

1、教学目标定位

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

二、教学内容分析

1、教材的地位与作用

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

三、教学诊断分析

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的.教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

初中数学教学教案设计模板范文 篇11

重难点分析

本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.学生在小学时接触过一些,可由小学学过的知识作为引入。

2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

一、教学目标

1.掌握概念,知道与平行四边形的关系.

2.掌握的性质.

3.通过运用知识解决具体问题,提高分析能力和观察能力.

4.通过教具的演示培养学生的学习兴趣.

5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.

6.通过性质的学习,体会的图形美.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:的性质定理.

2.教学难点:把的性质和直角三角形的知识综合应用.

3.疑点:与矩形的性质的区别.

四、课时安排

1课时

五、教具学具准备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

【复习提问】

1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.

3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.

【引入新课】

我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.

【讲解新课】

1.定义:有一组邻边相等的平行四边形叫做.

讲解这个定义时,要抓住概念的本质,应突出两条:

(1)强调是平行四边形.

(2)一组邻边相等.

2.的性质:

教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.

下面研究的性质:

师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).

生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.

性质定理1:的四条边都相等.

由的四条边都相等,根据平行四边形对角线互相平分,可以得到

性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.

引导学生完成定理的规范证明.

师:观察右图,被对角线分成的四个直角三角形有什么关系?

生:全等.

师:它们的底和高和两条对角线有什么关系?

生:分别是两条对角线的一半.

师:如果设的两条对角线分别为、,则的面积是什么?

生:

教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.

例2已知:如右图,是△的角平分线,交于,交于.

求证:四边形是.

(引导学生用定义来判定.)

例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.

(1)按教材的方法求面积.

(2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.

【总结、扩展】

1.小结:(打出投影)(图4)

(1)、平行四边形、四边形的从属关系:

(2)性质:图5

①具有平行四边形的所有性质.

②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.

八、布置作业

教材P158中6、7、8,P196中10

九、板书设计

标题

定义……

性质例2……小结:

性质定理1:……例3…………

性质定理2:……

十、随堂练习

教材P151中1、2、3

补充

1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.

2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.

初中数学教学教案设计模板范文 篇12

一、学情分析:

1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

二、教材分析:

教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

本节课的数学目标是:

1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

三、教学过程设计:

本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。

第一环节:问题情境,引入新课

问题:

(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的.表示法和乙水库水位变化量的表示法。

设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

第二环节:探索猜想,发现结论

问题:

(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

(-3)×3=_____;

(-3)×2=_____;

(-3)×1=_____;

(-3)×0=_____。

(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

(-3)×(-1)=_____;

(-3)×(-2)=_____;

(-3)×(-3)=_____;

(-3)×(-4)=_____。

教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。

教后事项:

(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

第三环节:验证明确结论

问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

4×(-4)=_____;

4×(-3)=_____;

4×(-2)=_____;

4×(-1)=_____;

(—4)×0=_____;

(—4)×1=_____;

(—4)×2=_____;

(—4)×(-1)=_____;

(—4)×(-2)=_____。

教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

教后反思事项:

(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

第四环节:运用巩固,练习提高

教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

(-1)×2×3×4=_____;

(-1)×(-2)×3×4=_____;

(-1)×(-2)×(-3)×4=_____;

(-1)×(-2)×(-3)×(-4)=_____;

(-1)×(-2)×(-3)×(-4)×0=_____。

通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

第五环节:感悟反思课堂小结

问题

1.本节课大家学会了什么?

2.有理数乘法法则如何叙述?”

3.有理数乘法法则的探索采用了什么方法?

4.你的困惑是什么

教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

第六环节:布置作业

巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

预习作业;略

四、教学反思:

1、设计条理的问题串,使观察、猜想、验证水到渠成

2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。

初中数学教学教案设计模板范文 篇13

案例主题:学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

背景:我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

活动过程:师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

理念反思:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的`参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

推荐阅读

小编精心推荐

教案设计 | 老师教案设计 | 法制教育教案设计 | 小班法制教育教案设计
上一篇:重阳节活动感悟及总结(通用九篇) 下一篇:检讨书工作态度反省学生
back_img
推荐标签