back_img
好工具 >范文 >实用文

2024数学优秀教案初中(集合六篇)

2024-10-01 09:41:26

【#实用文# #2024数学优秀教案初中(集合六篇)#】作为杰出的教师,编写教案是必不可少的,它有助于高效地进行教学活动。那么你有了解过教案吗?以下是好工具范文网小编为大家收集的初中数学人教版教案优秀,欢迎阅读与收藏。

2024数学优秀教案初中 篇1

一、教学目标:

(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

二、教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时

点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

三、教学过程

电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角”元素进行分类,师生共同归纳得出:

1、一个条件:一角,一边

2、两个条件:两角;两边;一角一边

3、三个条件:三角;三边;两角一边;两边一角

按以上分类顺序动脑、动手操作,验证。

教师收集学生的作品,加以比较,得出结论:

只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

下面将研究三个条件下三角形全等的判定。

(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。

学生得出结论后,再举例体会一下。举例说明:

如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;

再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。

板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。

举例说明该性质在生活中的应用

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

图形的'稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习(略)3 、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)

教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:

学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:

对只给一个条件画三角形,画出的三角形一定全等吗?

画一画:

按照下面给出的两个条件做出三角形:

(1)三角形的两个角分别是:30°,50°

(2)三角形的两条边分别是:4cm,6cm

(3)三角形的一个角为30,一条边为3cm剪一剪:

把所画的三角形分别剪下来。比一比:

同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等学生举例说明

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

学生练习

学生在教师引导下回顾反思,归纳整理。

2024数学优秀教案初中 篇2

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1 对角线互相垂直的.平行四边形是菱形.

注意此方法包括两个条件:

(1)是一个平行四边形;

(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2 四边都相等的四边形是菱形.

五、例习题分析

例1 (教材P109的例3)略

例2(补充)已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵ 四边形ABCD是平行四边形,

∴ AE∥FC.

∴ ∠1=∠2.

又 ∠AOE=∠COF,AO=CO,

∴ △AOE≌△COF.

∴ EO=FO.

∴ 四边形AFCE是平行四边形.

又 EF⊥AC,

∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是 ;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线 的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是 ( ).

(A)两条对角线相等 (B)两条对角线互相垂直

(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

2024数学优秀教案初中 篇3

一、教学目标:

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的'定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1、写出一个图象经过点(1,— 3)的函数解析式为:

2、直线y=—2x—2不经过第 象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

4、已知正比例函数 y =(3k—1)x,,若y随x的增大而增大,则k是:

5、过点(0,2)且与直线y=3x平行的直线是:

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

2024数学优秀教案初中 篇4

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

如3×a,应写作3.a或写作3a,a×b应写作3.a或写作ab.带分数与字母相乘,应把带分数化成假分数,

#FormatImgID_0#

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

课堂教学过程设计

一、从学生原有的认知结构提出问题

1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律a+b=b+a;

(2)乘法交换律a·b=b·a;

(3)加法结合律(a+b)+c=a+(b+c);

(4)乘法结合律(ab)c=a(bc);

(5)乘法分配律a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

三、讲授新课

1代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2举例说明

例1填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

例2说出下列代数式的意义:

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

四、课堂练习

1填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

2说出下列代数式的意义:(投影)

3用代数式表示:(投影)

(1)x与y的和;(2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1本节课学习了哪些内容?2用字母表示数的意义是什么?

3什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4a千克大米的售价是6元,1千克大米售多少元?

5圆的半径是R厘米,它的面积是多少?

6用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的1/3的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

2024数学优秀教案初中 篇5

教学目标:

1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

教学难点:

了解“两点确定一条直线”等事实,并应用它解决一些实际问题

教 具:

多媒体、棉线、三角板

教学过程:

情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

如何来描述我们所看到的现象?

教学过程:

1、 一段拉直的棉线可近似地看作线段

师生画线段

演示投影片1:

①将线段向一个方向无限延长,就形成了______

学生画射线

②将线段向两个方向无限延长就形成了_______

学生画直线

2、 讨论小组交流:

① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

(鼓励学生用自己的语言描述它们各自的'特点)

3、 问题1:图中有几条线段?哪几条?

“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

点的记法: 用一个大写英文字母

线段的记法:

①用两个端点的字母来表示

②用一个小写英文字母表示

自己想办法表示射线,让学生充分讨论,并比较如何表示合理

射线的记法:

用端点及射线上一点来表示,注意端点的字母写在前面

直线的记法:

① 用直线上两个点来表示

② 用一个小写字母来表示

强调大写字母与小写字母来表示它们时的区别

(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

练习1:读句画图(如图示)

(1) 连BC、AD

(2) 画射线AD

(3) 画直线AB、CD相交于E

(4) 延长线段BC,反向延长线段DA相交与F

(5) 连结AC、BD相交于O

练习2:右图中,有哪几条线段、射线、直线

4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

学生通过画图,得出结论:过一点可以画无数条直线

经过两点有且只有一条直线

问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

为什么?(学生通过操作,回答)

小组讨论交流:

你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

5、 小结:

① 学生回忆今天这节课学过的内容

进一步清晰线段、射线、直线的概念

② 强调线段、射线、直线表示方法的掌握

6、 作业:

①阅读“读一读” P121

②习题4的1、2、3、4作为思考题

2024数学优秀教案初中 篇6

一、教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯。

二、教学重点和难点

一元一次方程解简单的应用题的方法和步骤。

三、课堂教学过程设计

(一)从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3。

答:某数为3。

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4。

解之,得x=3。

答:某数为3。

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42500,

所以x=50000。

答:原来有50000千克面粉。

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5。

其苹果数为3×5+9=24。

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)

(三)课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

(四)师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆。

(五)作业

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

推荐阅读

小编精心推荐

数学优秀教案 | 初中数学教案 | 初中数学详细教案 | 初中数学日记
上一篇:2024主持新年晚会贺词(汇总八篇) 下一篇:2024幼儿园开学工作方案
back_img
推荐标签