【#实用文# #初中数学教案集合#】笔者发掘到“初中数学教案”这篇文章颇具价值,期望您经常光临我们的网站,以及时获知最新动向。学生们能够享受一个生动有趣的课堂,亦需老师提前准备好教案和课件。教案是指引教学的不可或缺的准则。
初中数学教案【篇1】
教学目标:
1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;
2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;
3、在合作与交流中的过程中,感受数学学习的乐趣。
教学教法:
教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。
1、从生活中了解小数,明确要用小数表示的必要性。
2、从已有的生活经验中,理解、抽象小数的意义。
3、通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。
4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。
教学学法:
1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。
2、引导学生自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。
1、在假期里你买了什么物品?花了多少钱?
2、老师买了一本书,同学们猜一猜要多少元?
从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。
这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。
同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?
3、小数是怎么读的,怎么写的?
(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)
(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)
(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)
2、用米做单位测量同桌的高度;
3、菜市场买菜统计表。
【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】
2、学了小数这节课,能谈谈你知道了些什么吗?
1、从生活中记录一些小数,明天同学之间相互交流;
布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。
师:同学们前几天我们栽了蒜苗,还记录了它在15天内生长情况的数据,昨天,大家把自己栽种蒜苗的数据进行了整理,制成条形统计图,举在手里,展示一下。
师:如果我们还想了解它从第3天到第15天整个的生长变化的情况,该怎么画呢?老师这有几种统计图,请你仔细观察,看哪一种更合适。(师出示条形统计图、扇形统计图、折线统计图)生任选其一。
能不能在你作的条形统计图上作一些修改或补充,把它变成这种统计图呢?
学生在小组内先讨论,再在图上试一试。
学生作图后展示,汇报作了哪些修改,表示什么意思?
师抓住学生将条形上的点连线,对比评价,选择优秀的作品,用多媒体演示由条形统计图演变为折线统计图(描点,连线)的过程
2.读趋势,
师:同学们都读出了点所表示的数量(板书数量),由点连成的线呢?
生说表示蒜苗从矮长到高的生长趋势。
读局部趋势,从第几天到第几天长得快,从第几天到第几天长得慢(板书趋势)
根据这一趋势请你估计蒜苗第10天大约长到多少厘米?
预测第20天大约长到多少厘米,并说说你的想法。
三、独立制图。
师:我们会读折线统计图了,那你会画折线统计图吗?怎么画呢?
出示笑笑蒜苗生长情况统计表,你能将它制成折线统计图么?
(1)从上图中你能说说“非典”新增病人的变化趋势吗?
(2)你能与同学说说产生这种变化趋势的原因吗?
(3)请你再提出一个数学问题,并尝试解答。
师:如果你是销售经理,根据今年销售趋势,明年你有什么打算?大约进多少?为什么?
教材内容:
教材的地位和作用这部分内容是学生已经认识了自然数,并初步认识了分数和小数的基础上,结合熟悉的生活情境,初步认识负数。通过教学,一方面可以适当拓宽学生对数的认识,激发进一步学习的愿望;另一方面也为学生在第三学段进一步理解有理数的意义以及进行有理数运算打下基础。
教学目标:
①收集生活素材来渗透负数的概念。引导学生初步理解正、负数可以表示两种相反意义的量。
②能正确地读写正数和负数,知道0既不是正数也不是负数。
③初步学会用负数表示一些日常生活中的实际问题。对正数、0、负数之间的大小有个直观的认识。
④感受数学在实际生活中的作用,培养自主探求新知的良好品质及实际应用能力。
学者分析:
本班有学生62人,大部分属于中上水平,学生已经具有一定的认知水平,他们好奇心强,具有创新和知识的迁移能力。
教学策略:
(1)通过丰富多彩的现实生活情景,帮助学生了解负数的意义。负数的产生和发展源于生活的需要。因此,教学本节课应注意为孩子们提供众多丰富的生活中的正负数现象,既让学生引起探究的兴趣,又让学生感受到数学就在生活中,体验到数学的无穷魅力和价值。
(2)借助直观手段理解相反的分界点与“0”的关系。本课的难点在于学生不容易理解负数、正数与0的关系。如何突破难点,直观教学手段是关键。这其中温度计的观察和海拔图的使用,可以有效地帮助学生逐步从直观到半直观再过渡到比较抽象地认识到它们三者之间的关系。
(3)开展有层次的探究活动,引领学生主动建构,发展学生的数学思维能力。
1、复印存折明细记录贴入,观察支出(—),存入(+),这一栏的数各表示什么意义?
{填相同还是相反}
2、上网收索今天的天气预报,记录哈尔滨,和福州的气温数据。
哈尔滨( )表示—--------------------------------------------
福州( )表示—--------------------------------------------
它们是以( )度为基准,例如:+16°表示--------------+16°表示--------------
—16°与—16°表示两个( )意义的量。
哪个地方的气温高,哪个地方的气温低?
5、收集生活中不同用法的负数,并说说表示什么?
(1)+500表示存入500,—500表示支出500,它们表示的意思是(相 反 ){填相同还是相反}
哈尔滨( —9°~~~—19° )表示—----今天气温零下9度到零下19度之间,气侯寒冷,下雪,结冰。------
福州( 11°~~~~~6° )表示—----今天气温零上11度到零上6度之间,气侯较温暖 ,看不见下雪,结冰的现象。------
它们是以( 0 )度为基准,例如:+16°表示--零上16度-----—16°表示----零下16度----
+16°与—16°表示两个(相反 )意义的量。
哪个地方的气温高,哪个地方的气温低?
带有“+”的数有------------- 叫正数 注:也可省略“+”号
带有“-”的数有------------- 叫负数 注:不可省略“—”号
+16读作-正十六-------—16读作—负十六--------
(4)0是正数还是负数?把你的思考与小组交流,讨论。然后小组汇报。
总结:0既不是正数也不是负数,它是正负数的分界点。
例如:盈利与亏选,上车人数与下车人数,地上成数与地下层数,水位升高与下降,相反方向的距离等。
学完这节学生还有疑难问题吗?,提出,由同学,小组解决,最后困难由老师及时解答。
初中数学教案【篇2】
一、课题引入
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
二、课题研究
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.
在正数的.前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.
于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.
三、巩固练习
例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.
特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元
日期周二周三周四周五
开盘+0.16+0.25+0.78+2.12
收盘-0.23-1.32-0.67-0.65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
初中数学教案【篇3】
①感受生活中幂的运算的存在与价值.
②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.
③逐步形成独立思考、主动探索的习惯.
④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.
问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?
从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.
学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?
根据乘方的意义可以知道:
探究新知1.探一探根据乘方的意义填空:
从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.
学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.
am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)
即同底数幂相乘,底数不变,指数相加.
注意性质中的'm、n的取值范围.
注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.
同底数幂的性质很容易推广到三个以上的同底数幂相乘.
在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.
根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.
让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?
学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
那么,(abc)n=?
注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.
例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3
这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.
深入探究例5计算:(1)(—8)2004(—0。125)2005(2)(—2)2n+1+2(—2)2n(n为正整数).
在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.
下面的计算对不对?如果不对,应当怎样改正.
(1)a3a3=a6; (2)b4b4=2b4;
(3)x5+x5=x10; (4)y7y=y8;
(5)(a3)5=a8; (6)a3a5=a15;
(7)(a2)3a4=a9; (8)(xy3)2=xy6;
注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.
(4)已知:3x+2y—3=0,则27x9y=___________
初中数学教案【篇4】
一、教学案例的特点
1、案例与论文的区别
从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。
从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。
教学设计的区别
教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。
3、案例与教学实录的区别
案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。
4、教学案例的特点是
——真实性:案例必须是在课堂教学中真实发生的事件;
——典型性:必须是包括特殊情境和典型案例问题的故事;
——浓缩性:必须多角度地呈现问题,提供足够的信息;
——启发性:必须是经过研究,能够引起讨论,提供分析和反思。
二、数学案例的结构要素
从文章结构上看,数学案例一般包含以下几个基本的元素。
(地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。
(研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。
(活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。
(描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。
(过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。
三、初中数学教学案例主题的选择
新课程理念下的初中数学教学案例,可从以下六方面选择主题:
(自主探究、合作交流的教学方式;
(合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;
(应用与拓展”的模式教学的成功经验;
(4)体现数学与信息技术整合的教学方法;
(引导者与合作者的作用;
(态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。
初中数学教案【篇5】
1.经历过一点、两点和不在同一直线上的三点作圆的过程.
重点:经历过一点、两点和不在同一直线上的三点作圆的过程.
难点:知道过不在同一条直线上的三个点画圆的方法.
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.
不在同一直线上的三个点确定一个圆.
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在
初中数学教案【篇6】
掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。
本节教学的重点是熟练进行运算,教学难点是理解法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.(2)正数的倒数是正数,负数的倒数仍是负数.
1.了解有理数除法的定义.
2.理解倒数的意义.
3.掌握有理数除法法则,会进行运算.
1.通过有理数除法法则的导出及运算,让学生体会转化思想.2.培养学生运用数学思想指导思维活动的能力.
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力.
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.
【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.(二)探索新知,讲授新课
4×=1;×()=1;0.5×()=1;
0×()=1;-4×()=1;×()=1.
【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.
学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数.
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
(4);(5)-5;(6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.
2.
∴8÷(-4)=8×().
师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?
【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.
师在黑板上出示例题.
计算(1)(-36)÷9,(2)()÷().
1.计算:
(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;
(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).
2.计算:
(1)()÷();(2)(-6.5)÷0.13;
(3)()÷();(4)÷(-1).
学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).
【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
初中数学教案【篇7】
2.会推导平方差公式,并能运用公式进行简单的运算.
难 点: 理解平方差公式的结构特征,灵活应用平方差公式.
你能用简便方法计算下列各题吗?
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
2.完全平方公式的几何解释.
二、重点难点:
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)+(-2)
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).