back_img
好工具 >范文 >实用文

方程的意义的教案十三篇

2024-09-27 09:16:50 方程的意义的教案

【#实用文# #方程的意义的教案十三篇#】在教学工作者实际的教学活动中,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?下面是好工具范文网小编整理的《方程的意义》教案,欢迎阅读与收藏。

方程的意义的教案 篇1

教学要求:

使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。

教学重点:

掌握解方程的依据、步骤和书写格式。

教学难点:

方程的解和解方程两个概念间的联系及区别。

教学用具:

简易天平、砝码、标有“20”、“30‘和”?“的方木块。

画有P97页上图的挂图、小黑板或投影片若干张。

教学过程:

一、激发

根据加法与减法、乘法与除法的关系,说出求下面各数的方法。

1、一个加数=()

2、被减数=()

3、减数=()

4、一个因数=()

5、被除数=()

6、除数=()

二、尝试

1、方程的意义

(1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来用来称物品的重量的。怎样用它来称物品的重量呢?在天平的左边盘内放置所称的物品,右边盘内放置砝码。当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等。砝码上所标的重量就是所称物品的重量。

(2)师演示如何用天平称物品。(称出的物品同P。105页上图。)

(3)问:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等。)天平的指针指在什么地方才能说明天平是平衡的?(指针必须指在刻度线的中央。)

(4)教师强调说明:天平两边放上重量相等的物品时,天平就平衡。反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等。

(5)问:那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!先让学生自由地说一说,根据学生的发言,教师写出算式20+30=50。

问:20+30=50是一个什么式子?(等式。)

(6)什么叫等式呢?(等式表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。)

(7)师改变天平上所放的物品和砝码,使之与P。105页的下图相同。引导学生观察、思考并回答下列问题:

①图中的天平是否平衡?说明了什么?(图中的天平是平衡的,因为指针指在天平刻度线的中央。说明天平左、右两边的重量相等。)

②怎样用式子来表示这种平衡的情况呢?再试试看!

板书;20十?=100。

③”?“是不是要求的未知数?我们以前学习过,一般用什么

字母表示未知数?(师生共同把等式”20+?=100改写成“20+x

=100)

④20+x=100是一个什么式子?(也是一个等式。)

⑤这道等式与20+30=50有什么不同?(这是一个含有未知数的等式。)

⑥左盘中这个标有”?“的方木块应该是多少克,才能使天平保持平衡呢?这就是这个等式中的x是多少才能使等式左、右两边正好相等呢?可以是一个随便的'重量吗?

生自由说,师总结:这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左、右两边正好相等。

⑦同学们观察一下天平,想一想,x应该代表什么数呢?(因为左边未知的方块重80克才能使天平平衡,所以x=80。)

师在20+x=100的右边板书:x=80。

(8)师出示P。106页上图。引导学生观察,启发学生思考下列问题:

①这幅图的图意是什么?(这幅图告诉我们,每个篮球的价钱是x元,3个篮球的总价是234元。)

②每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(还可以表示为3x元。)

③谁能根据图意写出一个等式来?(3x=234。)

④想一想,这个等式有什么特点?(这也是一个含有未知数的等式。)

⑤当x等于多少时,这个等式中的等号左、右两边正好相等?(当x=78时,这个等式中的等号友、右两边正好相等。)

师在3x=234的右边板书:x=78。

(9)引导学生归纳总结出方程的意义及方程与等式之间的关系。师指出:像这样一些等式:20+x=100、3x=234、x-8=5、x÷6=7叫做方程。

师再板书几个一般的等式,形成如下的板书:

方程一般等式

20+x=10020+80=100

3x=2343×78=234

x-8=513-8=5

x÷6=742÷6=7

师引导学生观察上面的等式,思考并回答下面的问题。

①方程是不是一种等式?(是等式。)

②方程与一般的等式相同吗?你发现方程有什么特点?

③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。板书:含有未知数的等式,叫做方程。

方程与等式之间有什么关系呢?我们可以用这样的图来表示。师请学生观察这幅图,并说一说它的含义。

根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;一切方程都是等式,但等式不一定是方程。

(10)练一练:做一做。

2、解简易方程(一)。

(1)理解方程的解和解方程的含义。

①请学生阅读书上的内容,回答什么叫方程的解?什么叫做解方程。

②指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)

(2)出示例1:解方程x-8=16。

①x在这道减法算式中相当于什么数?(被减数)

②根据四则运算各部分之间的关系,被减数应该怎么求?

③解方程的步骤和书写格式是怎样的?

师讲解:首先要写”解“字,然后根据四则运算之间各部分的关系及运算定律进行思考;x-8=16,根据被减数等于减数加差,所以x=16+8,x=24。运算的”根据“可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。

接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。

(3)练一练:做一做。

三、应用

练习二十四第1、2题。

教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。

四、体验

这节课我们学习了什么?

(方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写”解“字,上、下行的等号要对齐,注意不能连等。)

五、作业

练习二十四第3、4、5题。

方程的意义的教案 篇2

一、教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

二、教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

三、教学重点:

理解并掌握方程的意义。

四、教学难点:

会列方程表示数量关系。

五、教学过程:

1、出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

引导

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

2、出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3、讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

4、完成练一练

(1)下面的式子哪些是等式?哪些是方程?

(2)将每个算式中用图形表示的未知数改写成字母。

5、巩固练习

(1)完成练习一第1题

先仔细观察题中的`式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

(2)完成练习一第2题

6、小结

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

7、作业

完成补充习题

六、板书设计:

方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式叫做方程

方程的意义的教案 篇3

一、教学内容:

人教版五年级上册第62~63页“方程的意义”。

二、教学目标:

1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

三、教学重、难点:

1.教学重点:理解并掌握方程的意义。

2.教学难点:建立“方程”的概念,并会应用。

四、教学过程:

(一)情境引入

今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

(二)探究新知

1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

请同学们仔细观察,在这副图里你获得了哪些信息?

师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

师:我们不知道加入的`水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100

4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300

师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。

5.观察比较:

50+50=100

100+x>100

100+x>200

100+x<300

100+x=250

总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。

像100+x=250这样,含有未知数的等式就是方程。

揭题:今天这节课我们学的就是“方程的意义”。(板书课题)

6.提问:这一个等式是方程吗?为什么?

追问:这两个式子里都含有未知数,它们是方程吗?

思考:你认为一个方程应该符合哪些条件?

(强调:方程既要是等式,又要含有未知数。)

(三)巩固练习

1.判断下面哪些式子是方程,并同桌说一说理由。

35+65=100 8-x=2 y+24

2.4=a×2 x-14>72 15÷b=3

5x+32=47 28<16+14 6(y+2)=42

2.下面哪些天平不能用方程表示?(出示6幅天平图)

用方程表示出剩下天平的数量关系。

(说一说天平两边的数量关系,列方程)

3.用方程表示下面的数量关系。(说数量关系,列方程)

先独立列出方程,再与同桌说一说方程表示的数量关系。

4.猜方程

让学生初步感知:方程一定是等式,等式不一定是方程。

5.写方程,编故事。

6.方程“史话”。

(四)课堂小结

今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?

方程的意义的教案 篇4

一、教学内容

北师大版四年级下册P64-P65

二、教学目标

1、结合具体情境,在用多种方法表示等量关系的活动中了解等量关系,知道同一个等量关系可以有不同的表现形式。

2、初步体会等量关系在日常生活中的广泛存在,体会数学的应用价值。

教学重点:

在用多种方法表示等量关系的活动中了解等量关系。

教学难点

知道同一等量关系可以用不同的表示形式。

三、学生的学习基础

学生已学会了加与减的互逆关系、乘与除的互逆关系。学生在解决问题学习中积累的数量关系的学习经验。

四、教学设想

将数学概念“嵌入”数学学习背景与结构之中,让学生感受所学的概念位于数学背景的“哪个”位置,这对学生建立完整的知识系统

是极其重要的。

五、教学思路

关系——数量关系——等量关系

六、教学过程:

1、制造冲突,聚焦“数量关系”

⑴课件出示

⑵根据这两个已知的数量,同学们猜猜要求的数量可能是什么?

⑶学生找出求和、求差、倍数三个问题?

⑷展示淘气问题,鸭的质量有多少千克?

⑸学生讨论、交流为什么算不出来?

⑹教师小结,已知数量与要求数量之间没有关系。

2、辨别比较,引入“等量关系”

⑴教师提问,如果有关系是不是就能算呢?

⑵分别出示两种关系

⑶说一说它们之间的关系。

⑷这个关系能确定鸭有多重吗?

⑸学生交流、讨论

⑹教师小结:上面两个关系不能确定鸭有多重,但是能确定鸭的质量的范围。

⑺教师:你觉得什么样的关系就能确定鸭的质量呢?试着用手比划一下。

⑻课件出示:

3、自由创造,感知“等量关系”

(1)出示学习单,学生自主填写相等的关系。

(2)分别展示以下三种情况

鸭鸭鹅鸡鸡鸭鸡鸭鹅

(3)学生根据相等的关系分别算出鸭的`质量。

(4)小结:在数学里我们把这样相等的关系叫做等量关系。

4、自主尝试,表示“等量关系”

(1)出示

(2)这个等量关系,谁能用一句话说清楚。

(3)你能不能用一个式子表示这个等量关系?

(4)小结:鸭的质量×2=鹅的质量

(5)有不同的式子表示吗?

(6)小结,像这样的式子叫做等量关系式。

5、数形结合,感悟“等量关系”

(1)出示

(2)请看,这三个人的身高有关系吗?你是怎么知道的?

(3)请你表示出妹妹身高与姚明、笑笑身高的关系?

(4)学生自主完成。

(5)交流表示方式:等量关系式、线段图

妹妹身高×2=姚明身高

妹妹身高+20=笑笑身高

……

(6)对比线段图和式子,发现用图表示更直观。

(7)展示下面的等量关系,进行交流和讨论

6、走进生活,寻找“等量关系”

(1)课后练习

(2)动画中寻找等量关系

(3)寻找教室里的等量关系

七、板书设计

等量关系

(直观)

鸭的质量×2=鹅的质量

妹妹身高×2=姚明身高

妹妹身高+20=笑笑身高

姚明身高÷2=妹妹身高

笑笑身高-20=妹妹身

方程的意义的教案 篇5

设计说明

小数乘法在实际生活中有着广泛的应用,教材通过创设给希望小学买文具和书的情境提出问题,通过让学生解决问题体会到小数在实际生活中的应用。

1.注重学生的情感教育。

本节课开始,以观察希望小学的学习环境导入,出示一些反映贫困地区孩子们艰苦的学习环境的图片,使学生的心灵受到触动,激发学生的同情心,使学生深刻地体会到贫困地区的孩子们需要关爱,培养学生富有爱心和同情心的美好品德。

2.注重解决问题方法的多样化。

在教学时,尽可能放手让学生自主探究、讨论交流,用多种方法解决问题。在比较不同方法的过程中,使学生认识到整数的运算律在小数运算中也同样适用,并会运用整数的运算律进行简便计算。

课前准备

教师准备 PPT课件

学生准备 练习卡

教学过程

⊙激趣导入

1.课件出示反映希望小学学习环境的图片。

谈话:看到以上图片,你有什么感想?

学生观察图片,畅谈感想。

2.引导:虽然希望小学学习环境艰苦,但是那里的学生对学习却有着强烈的渴望。通过对比,我们学校有多媒体等教学设施,我们好幸福啊!在这样的'学习环境下,我们又要做些什么呢?

3.引入:同学们都很有爱心,这节课让我们和希望小学的同学们手拉手,奉献我们的爱心吧!让我们伸出援助之手,给希望小学的同学们买一些学习用品和课外读物吧。(板书课题:手拉手)

设计意图:引导学生反思自我,激励孩子们更加努力地学习。让学生感受到生活中处处有数学,激发学生学习数学的兴趣,提高应用数学的能力。

⊙探究新知

1.出示教材44页情境图。

(1)引导学生观察情境图,仔细阅读上面的文字,说一说图上提供了哪些信息。

(2)课件出示相关信息:①1本练习本2.8元,一个铅笔盒6.1元。淘气要给希望小学3名同学分别买1本练习本和1个铅笔盒,一共要花多少元?②1本练习本2.8元,1本《数学家的故事》7.2元。笑笑要给希望小学5名同学分别买1本练习本和1本《数学家的故事》,一共要花多少元?

2.小组讨论,解决问题①。

(1)如何解决这个问题呢?引导学生以小组为单位分析题意并列式解答。

(学生试做,教师巡视检查,请用不同方法解题的同学说一说自己的解题思路和算法)

(2)指名板演。

方法一:2.8×3=8.4(元) 6.1×3=18.3(元)

8.4+18.3=26.7(元)

方法二: 2.8×3+6.1×3

=8.4+18.3

=26.7(元)

方法三:2.8+6.1=8.9(元) 8.9×3=26.7(元)

方法四: (2.8+6.1)×3

=2.8×3+6.1×3

=8.4+18.3

=26.7(元)

(3)观察这四种方法,其中两种是分步计算,两种是列综合算式计算,你发现了什么?

方程的意义的教案 篇6

一、引言

我们的教学究竟要赋予学生什么?是知识,还是方法?我认为方法比知识更重要。一个学生一旦掌握了科学的学习方法,他对后继的学习将会产生积极效应。那么在数学课堂上如何教给学生学习的方法?又如何在课堂教学中体现“高参与,高自主,高协同,高愉悦,高效能”的教学理念?带着这样的思考我设计了《方程的意义》一课,并在参加20xx年西乡优质课大赛中荣获一等奖。

二、教学背景介绍

1.学生的认知水平与认知特点。

认知水平:《方程的意义》是九年义务教育六年制小学教科书第九册第四单元内容。是在学生已学了一定的算术知识,初步接触了一点代数知识的基础上学习的。本节课之前学习了用字母表示常见的数量关系,运算定律,计算公式,用字母表示数量,以及根据含有字母的式子求式子的值。

认知特点:四年级孩子对知识的认识是比较感性的,他们必须让数学与生活有联系才能产生兴趣,这个年段的孩子已经能逐步学会区分出概念中本质的东西和非本质的东西,学会掌握初步的科学定义和独立进行逻辑论证。同时,要达到这样的思维活动水平,也离不开直接的和感性的经验,所以仍然具有很大成分的具体形象性。

2.教学内容的功能与地位。

《方程的意义》是义务教育课程标准实验教科书小学数学五年级上册第四单元的内容,它是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时又是将学习的“解方程”的基础。

《方程的意义》对于儿童来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

三、教学过程反思

《新课程教学现场与教学细节》一书中说“细节在教学过程中的功能和作用,在促进学生发展中的意义和价值,举轻若重。”确实,在一定程度上,课程是由课堂上无数个细节共同组成的,它们就象一颗颗星星点缀着黑暗的夜空,而夜空也因为有了星星的点缀才会更加炫烂。《方程的意义》一课,我精心地设计了一个个教学小细节,正是因为这些小细节的点缀这节课才能在西乡优质课比赛中大放异彩,同时我认为这些细节也正好是“高参与,高自主,高协同,高愉悦,高效能”课堂的最好体现。

细节片段一:教材与现实的交接

在出示天平后,学生根据天平的平衡情况说了两个等式,接下来

师问一个学生;你的身高是多少?生回答:不知道。

师:我们可以用什么字母来表示?

生1答:X。生2、A…

师:老师现场请一个老师来和你比比身高。(师请一个老师与学生背对背站好。)

师:有没有什么办法让他俩看起来一样高?

生1:让赵晓同学站到凳子上。

师:好,听你的。(师现场拿出一个凳子)师;这个凳子老师已经测量过了,它的高度是25厘米。

(老师和学生背靠背站到一块儿,正好一样高。)

师:你能根据这个情境写一个等式吗?

气氛顿时活跃起来了,学生纷纷举手要求回答。

生1:X+25=162,赵晓的身高加上凳子的高度等于老师的身高。

生2:162-X=25,老师的身高减去凳子的高度等于赵晓的身高。

…….

反思:

数学新课标的一个重要理念就是突出了数学的现实性,数学教学应该源于现实,用于现实。我想数学不应再是演算纸上的智力游戏,她应该就在我们身边,活生生的存在于生活事实之中。其实这个片段就是北师大版四年级下册98页的一个练习,但是我在设计的时候巧妙地让它与现实相结合起来,事先安排了一个学生站在25厘米高的凳子上与教师刚好一样高的孩子来配合我完成这个片段的教学(但是其他学生不知道是我事先安排好的,所以他们都觉得很神奇)。这也成为本节课的一个亮点,让纸上的数学走进孩子的世界,真正成为孩子认知世界的工具,让孩子们领悟数学知识的本来面貌,学生不仅知道了知识在生活中的真实存在,且在这个过程中培养了他们探究的品质和素养,这比获得知识本身更重要。实践证明这样的教与学,教者教得得心应手,学者学得从容不迫。

细节片段二:分类辨析

师要求学生把黑板上的所有式子进行按天平的平衡情况进行分类。

师:哪位同学愿意第一个来汇报。

生:根据天平的平衡情况,我是把带等号的分一类。不带等号的又分一类。(生边说边移动黑板上的式子)

师:这样分有道理吗?还有哪些同学和他分类的标准是一样的?

师:在数学上,像这样含有等于号的式子,我们把它叫做等式,(板书),像这样的一类,就叫做——生齐说:不等式。看来,你们还真抓住了关键来分。

师:现在我们再观察这些等式,我们能不能在等式的基础上再分一分。

2、揭示方程含义:

师:请同学们仔细观察这一类式子,和其它式子相比,它们具备怎样的特点?

生:它们又有未知数,又是等式。

师:在数学上,像这样的含有未知数的等式,我们把它叫方程。(板书)

师:今天同学们表现真棒,通过自己的努力把方程的含义总结出来了,劳动的果实得来不易啊,我们一起把方程的含义读一遍吧。

生齐读

师:你们读得真好,但是老师觉得缺少了点拟阳顿挫,再读一遍吧,把你们认为重点的词读重一点好吗?

生听了教师的提示读得非常好。

师:你把哪个词读重了?

生:未知数,等式。

师:你们读书的`声音真好听,简直就是天簌之音。那这些不是方程的式子我们就把它们摘下来吧,但是把它人摘下来总要有个理由吧,凭什么说我不是方程啊?

生一个个上台摘式子并汇报。(注,学生汇报相当的精彩,有个别孩子还用上了不仅…还……,虽然…..但是……这类的关联词,教师都及时地对孩子的语言表达能力进行了表扬。)

反思:

方程教学是一个概念教学,概念教学如果离开了孩子们的自主探索,自我总结那么这个概念的教学就是失败的,虽然可以通过死记硬背,但那是枯燥无味的,孩子们也将失去学习的兴趣。本节课中我借鉴了其他老师的教法加入自己的一点理解,注意在‘引’字上下功夫,遵循由浅入深、由易到难、由具体到抽象的教学原则,引导孩子们在动手、动脑、动嘴中总结出方程的概念并在这个过程中不断地加深对方程意义的理解,自然而然地“水到渠成”。

细节片段三:融入生活

师:方程在我们的生活应用得很广泛,我们一起来看看方程在我们衣食住行都有哪些表现?

(课件画面出示衣食住行四个字。)你们想先接受谁的挑战?

每一个字链接一幅图。

(衣:画面出示一件衣服X元,三件衣服共120元,根据图意写一个方程。)

(食:一个汉堡包的价钱7元,二杯可乐,一杯可乐的价钱是X元,共17元,根据图意列方程。)

(住:一大壶水刚好倒满二个小水壶和一个杯子。杯子200亳升,小水壶一个X亳升。根据图意列方程)

(行:一辆公共汽车到站后下来8人,又上来6人,这时车上共有45人,车上原有多少人?)

反思:

著名数学家华罗庚说过:“人们对数学早就产生了枯燥乏味神秘难懂的印象,成因之一便是脱离实际” 。确实,数学知识具有高度抽象性,这与小学生思维的具体形象性产生矛盾。如果我们教师在教学时不能把知识更好地融入生活,不能从生活中提炼生活情境应用于教学,学生怎么能对那些没有生命的枯燥数字产生兴趣呢,而生活本身是一个广阔的数学课堂,生活中就存在着大量的数学现象,在本节课上,我成功在把方程的练习融入人们的衣食住行中,让孩子们在衣食住行中体验方程,认识生活。在本节课中孩子们在课堂上置身于生活情境中,情绪高涨,积极参与探索,课堂教学异常活跃,教学效果非常好。

细节片段四:激励语言的应用

德国教育家第斯多惠说:“教学艺术不在于传授本领,而在于激励、唤醒和鼓舞。”在课堂教学中,教师经常使用一些赞美的语言激励学生有助于激发学生学习动力,拉近师生之间的距离, ,达到心灵的沟通。本节课中我注意运用多种多样的激励的语言对孩子的学习行为和学习过程进行点评,这些温馨的语言如春风化雨着滋润学生的心田,让孩子们在课堂中找到了学习的方向,乐意与老师共同探索知识。如:

上课前我与孩子们进行互动时:

师:同学们,今天老师有幸来到华胜学校与同学们一起学习,老师好高兴,我早就听说华胜的同学们学习上善于思考,发言积极大方,声音洪亮,老师对华胜早已心神向往。看同学坐得多端正啊,你们都准备好了吗?

学生读出方程概念时:

师:你们读书的声音真好听,简直就是天簌之音。老师还想听一次,可以吗?

学生发现问题时:

师:你能用数学的眼光去发现问题,老师真为你感到骄傲。

师:真是英雄所见略同,老师也是这样想的。

学生提出意见时:

师:你的建议真棒,就按你说的来办。

等等……

反思:

这些激励语言的应用对本节课的成功起到了不可磨灭的功劳,让学生整节课都处于乐学、向学的积极状态中。教学中,在学生探讨出方程意义后,我赞许的一笑,学生受到鼓舞,顿时争先恐后各抒己见,课堂变成师生研讨的场所。课堂中,当我夸奖学生和数学家一样时,学生的心里一定是美滋滋的,有了更多学习数学的兴趣,也坚定了学好数学的信心。在获取知识的过程中,教师把学生是否获得了积极的情感体验作为自己的事,从学生的角度去感受,并参与学生的探索求知过程,和他们一起研究、探索、获取,分享他们的快乐,教学就会达到师生和谐相处、课堂上的其乐融融。

四、不足之处:

1、学生在练习时其实想到了很多种列方程的形式,但是因为是比赛课,怕后面的时间不够,还有很多学生想要展示自己的想法,我居然很残忍地直接说到下一题了,想来真是不应该。课后评委老师评课时也说到这是一个小遗憾,课堂就是学生展示的舞台,作为教师就应该为学生提供这个展示的舞台。

2、列方程解决问题,找出题中的等量关系对于少部分学生还是有难度,在有限的时间感觉还是不能很好的帮他们有效理解题意。

3、方程的意义应是含有未知数的等式,而我呈现给学生的却是含有字母的等式,数学概念是严谨的,差之毫厘,谬之千里.我觉得也应该给学生讲清楚这个未知数的表现形式不仅仅只有字母。

五、再教设计思路:

1、引入部分:

我看了很多教师这节课的引入都是多天平开始,我想能不能从其他的情境引入?如:

一场篮球比赛,红、蓝两队打得还挺激烈的。现在场上的比分是:26:33你会用数学式子表示两队比分的关系吗?(得出:26 < 33)

红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,刚上场的一段时间里,只有红队连续得了χ分,请你猜一猜,两队的情况会怎样呢?

你能用数学式子来表示比分可能出现的几种关系吗?

从篮球赛的比分中引入不等式和等式,再分出方程,可行不?

2、小结概念部分。

20xx年10月有幸听北京市特级教师赵震上了一节《方程的意义》,他在处理方程的概念时是这样的:

他在学生把方程和等式都分出来后说:同学们,我们今天学习的课题就是认识方程,老师可以告诉你们,象这样的式子就叫方程。那么,请大家讨论看看,方程得有什么?

教学中直接把结果呈现给学生,再让学生通过讨论交流、探索得出这个概念的关键词是什么,这种倒置的教学方式我想也值得我试试呢。

3、练习部分:

因为我在巩固练习时没有加入用线段图列出方程的练习,我觉得下次再教时是不是把根据线段图列出方程也做为练习的一种。

方程的意义的教案 篇7

方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。

根据儿童思维发展的递进性,设计了三个层次的.活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。

方程的意义的教案 篇8

《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。

在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的.渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.

本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。

方程的意义的教案 篇9

教学目标:

知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

教学方法:合作探索,小组交流、观察、分析、概括等方法

教学过程:

(一)创设情境,激发兴趣。

师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

(二)观察现象,抽象概括

1.平衡现象数量关系的抽象概括。

师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?

师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)

师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?

2.不平衡到平衡现象数量关系的抽象概括

师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?

师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻

这边加150克砝码,观察天平平衡了吗?

师:左边盘中物体质量的可以怎样表示?(生:X+150)

师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)

师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?

师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)

3.不确定现象数量关系的抽象概括

师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?

师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)

师:这瓶矿泉水被喝掉了多少克?(生:不知道)

师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)

师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]

师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)

(三)观察分类,抽象概念

1.观察分类。

师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)

2.展示分类。

①交流分类情况,说明分类理由。

②揭示“等式”与“不等式”的概念

师:像这样的含有等号的.式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)

3.抽象概念

师:请同学们仔细观察这些等式,它们有什么不同?

师:这些等式中的字母表示“未知数”,像这些“X+100=

含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)

师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)

(四)应用新知,加深理解

1.判断下列式子是不是方程。

2.创作方程。

3.问题质疑,揭示方程与等式的关系。

①含有未知数的式子是方程?

②“方程一定是等式,等也一定是方程?

(五),巩固练习。

师:说说你这节课有什么收获,你还想学习有关方程的什么内容。

师:我们一起来应用今天所学的知识吧!

方程的意义的教案 篇10

教学目标:

1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。

教学重点:方程的意义。

教学难点:正确区分等式和方程这组概念。

教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。

教学过程:

一、课前谈话:

同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?

这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)

当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。

二、新授

1、玩一玩

利用这种现象,科学家们设计出了天平,老师也自己做了一个简易的天平。我们用它来玩一个类似于跷跷板的游戏。好不好?

谁想上来玩?

请你在左边放一个20克的法码,右边放一个50克的法码,这时天平怎么样?(右边的把左边的跷起来了),在左边再放一个20克的法码,这时天平怎么样?(右边的把左边的跷起来了,说明右边的重量比左边的重),

你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)

再在左边放一个10克的法码,这时天平怎么样?(平衡了)

你能也用一个式子来表示这时候的现象吗?(板书:20×20+10=50。学生说加法,则说两个20相加还可用[用水笔板书:]

看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?

老师为你们每一个学习小组也准备了一架简易天平,还有一些法码,以及两块橡皮泥,大家可以利用这些工具,或者利用你们身边一些比较轻的物体,如橡皮、小刀等,来玩一玩,然后把你们玩的时候看到的现象用式子表示出来,好不好?

给你们5分钟的时间,比一比哪个小组又快又好。

哪个小组把自己所写的式子拿上来展示出来。

(有不一样的都可以拿上来)

2、分类

你们对这些式子满意吗?

大家写出了这么多的式子,你能把这些式子按照一个统一的标准分类吗?小组讨论怎么分?按照什么样的标准分?

谁来说说你们是按照什么标准分的?

1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。

2、把学生写的式子分成两堆,让学生分]

师:按照不同的标准,有不同的.结果。这一种分法,我们得到的这几个式子是什么式子?这一种分法,

师:你能把这一种再分成两类吗?怎么分?指名板演。

你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)

象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。

3、理解概念

练习:你能举一个方程的例子吗?学生在本子上写一个。

回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)

4、巩固概念

老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用X表示。

(2)未知数不一定只有一个。

一个方程,必须具备哪些条件?

5、比较辨析

师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?

如果老师说,方程一定是等式。对吗?(结合板书交流)

等式也一定是方程。(结合板书交流)

也就是说:方程一定是(等式),但等式[不一定是(方程)]。

你能用自己的方式来表示方等式和方程之间的关系吗?

例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)

三、巩固

师:同学们的图非常形象地表示出了方程和等式之间的关系,

1、这些图你能用方程来表示吗?

2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?

如:我班一共有多少人,男生有多少人?如果把女生的人数看成X,你会用方程来表示男女生人数与全班人数之间的关系吗?

师:这里还有一些有关我们学校的信息,谁来读一读。

3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)

四、小结

学了这堂课你有什么想说的吗?你有什么想对老师说的吗?

方程的意义的教案 篇11

各位评委老师上午好!

今天我说课的内容是人教版小学数学五年级上册教材53-54页的《方程的意义》,下面我从说教材、说学情、说教学理念、说教法、说学法、说教学准备、说教学流程、说板书设计几个方面对本课的教学进行一下阐述:

一、说教材:

《方程的意义》是义务教育标准实验教材小学数学五年级上册教材53-54页的内容。这部分教学内容在《数学课程标准》中属于“(数与代数)”领域的知识。方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量间的关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。教材注意创设情景,从学生已有的知识和经验出发,注重让学生根据具体的情景根据各个天平的状态,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。学好这部分知识有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

根据这一部分教学内容在教材中的地位与作用,结合教材以及学生的年龄特点,我制定以下教学目标:

⒈ 知识与技能目标:理解并掌握方程的意义,弄清方程与等式之间的关系。

⒉ 过程与方法目标:(1)在操作、观察、讨论、分析中探究学习;

(2)、让学生构建概念数学观念,并解决实际问题。

⒊ 情感态度与价值观目标:(1)、游戏中乐有所得,激发学生的学习兴趣;(2)、体会知识探索过程中合作交流的乐趣。

教学重点:建立方程的概念。 教学难点:正确区分等式与方程的含义。

二、说学情:

五年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此,在这节课中我设计了多种活动,大胆地放手让学生自主探究、合作交流,充分发挥学生的主体作用。从而使学生轻松学到知识。

三、说教学理念:

课堂教学首先是情感成长的过程,然后才是知识成长的过程。 学生的学习过程是一个主动构建、动态形成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历、体验和运用中真正感悟新知。

数学学习过程理应成为学生享受教师服务的过程。

基于以上教学理念,我在教学中遵循“引导探究学习,促进主动发展”的新教改思路。力求体现教学中的主动学习原则、最佳动机原则、阶段性渐进原则和直观性原则。

四、说教法:

教法:这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主的、充满自信的学习数学,平等交流各自对数学的理解,并通过互相合作共同解决所面临的问题。我设计了如下三个方面的教学手段:1、用直观的操作和演示,让每位学生在观察和动手操作的过程中理解和归结出结论。2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实充分利用身边事物,创设情境,激发兴趣,让学生能在轻松愉快有趣的氛围中理解掌握知识。

五、说学法:

学法:为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究,合作交流,激发学生的学习积极性,增强学生学习知识的信心。让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、比较、概

括和应用的能力。

六、说教学准备:

教师准备:根据教材内容自制的多媒体课件。

七、说教学流程:

为了突出教学重点、突破教学难点,达到已定的教学目标,我安排了以下四个教学环节,即:

创设情境,生成问题——探索交流,解决问题——巩固运用,内化提高——回顾整理,反思提升。

每个环节的具体教学设计如下:

第一环节:创设情境,生成问题。

谜语导入,引出天平这个公正的大法官,使得学生对天平感兴趣,从而请学生说说对天枰的.了解,接着视频介绍天平的原理。

[本环节的设计意图:精彩的开头,不仅能使学生很快由抵制状态进入兴奋状态,还能使学生把知识的学习当成自我需要,使教学任务顺利完成。在这个环节中,我从学生喜闻乐见的谜语引入,更接近学生生活,更能让学生接受,从而激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮]

第二环节:探索交流,解决问题。

本环节我设计了以下几个教学活动。

活动一:

情景1:演示天平左边放两个50克的砝码,右边放一个100克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。(板书:50+50=100)

情景2:演示天平左边放上两盒一样重的饮料(250克),右边放上另一瓶饮料(500克),再次请学生用式子表示天平所处的状态。(板书:250+250=500)

这两个情景学生非常熟悉,既让学生从天平"平衡"中体会到等式的含义,又能较好地激发了学生学习的乐趣.

活动二:

我还创设了2个情境,让学生观察天平从不平衡到平衡的变化过程,真正体会天平左右两边的质量相等,可以用等式表示.

情景3:演示出天平左右盘分别放一个空杯子和一个100克的珐码,使学生观察到在天平平衡,即空杯子的重量和珐玛的重量是相等的,空杯子的重量=100克。继续演示,在杯中倒满水,天平倾斜,说明不平衡,得到100+x>100的不等式。(板书:100+x>100) 再增加珐码,又得到100+x=250的等式。(板书: 100+x=250)

情景4:天平左边放一个球,右边方一个50克的砝码,根据不平衡状态得到y<50的不等式。(板书:y<50)接着在左边增加一个同样大的球,天平平衡了,得到y+y=50或2y=50的等式。 (板书:y+y=50或2y=50)

以上的板书都做成贴片形,可随时移动位置,方便下一环节进行分类。

活动三:

引导分类,概括方程的意义

在得出这么多的等式和算式后,学生小组合作,进行分类,并交流分类的标准。学生在分类的过程中逐步概括出方程的定义:含有未知数的等式叫做方程(板书)。在此基础上,再次让学生观察,讨论与交流,得出方程两个要素:一必须含有未知数(未知数不一定用X表示,未知数不一定只有一个)、二必须是等式(也就要有“=”)。

[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。]

第三环节:巩固运用,内化提高。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

练习题组设计如下:

(1)"找方程",即教材62页第1题:下面的哪些式子是方程?

X+3.6=7 3-1.4=1.6 ax2<2.4采用同桌交流的方式进行交流,不是方程的题目要说明理由。

(2)“写方程”, 让学生写出一些方程和举出反例,巩固方程的意义。

(3)数学游戏:教师出示式子,学生做动作。如果式子是方程,学生就跳一下。如果是等式,学生就蹲下。两样都不是,则不用做动作。

(4)"列方程",即教材62页第2题:根据天平列出方程。

(5)根据文字列方程,即教材62页第3题。例如:小明x岁,爸爸40岁,爸爸和小明相差28岁。

[本环节的设计意图是:通过层层递进的练习,加深理解消化所学的知识,并应用所学知识灵活解决实际问题。进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。]

第四环节:回顾整理,反思提升。

这一环节,我利用课件展示以下几个问题:

⑴ 今天你学会了什么?⑵ 你有什么收获? ⑶ 你有什么感想?⑷ 你要提醒大家注意什么?⑸ 你还有什么疑惑?⑹ 你感觉自己今天表现如何?你感觉你组内的其他同学表现如何?

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,让学生再次体会成功的喜悦。使他们更加热爱数学。

[本环节的设计意图是:通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。]

八、说板书设计:

科学的板书设计往往对学生全面理解学习内容,提高学习效率,起到

事半功倍的作用。本课的板书设计包括:(

方程的意义

50+50=100 100+x=250

250+250=500 2y=50 方

等式 a+2=17 程

x+y=50

含有未知数的等式叫做方程。)。这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。

以上是我对( 方程的意义)这部分知识的分析与教学设计。由于时间短促,有很多不当之处,希望各位评委老师多加批评指正,我的说课到此结束。谢谢大家!

方程的意义的教案 篇12

一、教材分析,学情解析,目标定位

(一)教材分析:

《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

(二)教学目标:

结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。

2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。

3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。

(三)教学重难点

列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。

(四)学情分析:

课前我们对学生进行了调研,调研内容主要有三项:

一、求未知数

这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。

二、给式子分类,并写出每类的特点。

设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。

三、你们在生活中见过与跷跷板类似的物品吗?

设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。

(五)教法:

新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

1、用直观的操作和演示,让每位学生理解和归结出结论。

2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

(六)、学法

为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

二、教学过程

教学活动主要安排了五个环节:

1、创设情景,抽象出等量关系,理解等式的性质

等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。

活动一:感知平衡,体会等式含义,理解等式性质。

课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的`状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

活动二:观察发现,抽象出不同的式子

创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。

2.引导分类,抽象出方程的意义

运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

3.讨论比较,辨析、概念——等式与方程的关系

为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想。

4.巩固深化,拓展思维——练习

在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。

5.小结新知,明确收获

让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。

方程的意义的教案 篇13

设计说明

日常生活中蕴涵许多有关小数的问题,已经对小数的相关知识有了一定的了解,本节课在此基础上学习小数点的移动引起小数大小变化的规律。借助课件创设学生自主探究的空间,培养学生的数学综合素质,通过教学让学生掌握小数点位置移动引起小数大小变化的规律。借助“小数点搬家”的情境解决相关的问题,拓展学生的思维,培养学生自主探究、合作交流、应用所学知识解决实际问题的能力。

1.注重生活情境的创设,在探索中获取新知。

通过“蚂蚁快餐厅”中价格变化的情境,先让学生讨论为什么要让小数点搬家,再接着讨论三次标价的变化及实际价格,最后让学生观察小数点向右移动小数大小变化的'规律,让学生在理解的基础上讨论小数点向左移动小数大小变化的规律。

2.根据学生的认知结构,突破重难点。

引导学生观察、比较三次不同的标价,它们都有数字“1”,但小数点的位置不同,小数的大小就不同。然后借助元、角、分的关系,让学生了解小数点向右移动时小数的大小如何变化。在此基础上再推出小数点向左移动时小数的大小如何变化,并加以验证。

课前准备

教师准备:PPT课件

学生准备:数字卡片

教学过程

⊙创设情境,激趣导入

我们已经学习了有关小数的知识。小数中最重要的一个符号是什么?(板书:小数点)今天,我把这位客人请进了课堂,看看它会给我们带来什么?

(动画)在轻快的音乐中,草原上跳出三个数字并排列成:256。这时小数点跳出来了,自我介绍:“大家好!我是小数点。”接着小数点跳到5和6之间(25.6),再跳到2和5之间(2.56),小数点说:“同学们!今天我们一起学习小数点搬家。”(板书课题:小数点搬家)

师:哦,原来小数点要搬家了。看了课题你有什么想法吗?

设计意图:通过创设“小数点搬家”的情境,吸引学生的注意力,让学生从具体情境中初步体会小数点的重要性,激发学生的学习兴趣、好奇心和求知欲。

⊙探究新知,合作交流

(一)探索小数点向右移动引起小数大小变化的规律。

1.出示课件,提出疑问。

课件出示主题图:小数点怎样搬的家?小数点的不断搬家使蚂蚁快餐厅的价格发生了怎样的变化?

2.师生共同明确:小数点第一次向右移动了一位,第二次又向右移动了一位,快餐的价格在逐渐增加。

3.在学生回答的基础上明确:快餐的价格由0.01元到0.10元,再到1.00元。

4.请同学们认真观察,0.01、0.10、1.00的小数点的位置有什么变化?它们的大小又有什么变化?请同学们以小组为单位,讨论交流。

5.学生汇报,交流结果。

(1)小数点向右移动一位。

方法一:0.01元=1分,0.1元=1角=10分,10分是1分的10倍,0.1元是0.01元的10倍,所以小数点向右移动一位,就扩大到原数的10倍。

方法二:0.01是,0.1是,0.01是100份中的1份,0.1是10份中的1份。所以0.1是0.01的10倍。所以小数点向右移动一位,就扩大到原数的10倍。

方法三:0.1米看成1分米,0.01米看成1厘米,1分米是1厘米的10倍,0.1是0.01的10倍。所以小数点向右移动一位,就扩大到原数的10倍。

(2)小数点向右移动两位。

0.01元=1分 1.00元=1元

0.01的小数点向右移动两位就是1,1元是1分的100倍,所以0.01的小数点向右移动两位,小数就相当于乘100,得到的数是它的100倍。

6.提问:如果小数点向右移动三位、四位,又会发生怎样的变化呢?同桌之间说一说。

7.小结:小数点太神奇了,它只要向右一跳就扩大,向右跳一位,得到的数就扩大到原来的10倍;向右跳两位,得到的数就扩大到原来的100倍……

推荐阅读

上一篇:2024中秋节活动总结稿(合集十二篇) 下一篇:幼儿园班级工作总结小班班主任汇集8篇
back_img
推荐标签