back_img
好工具 >范文 >实用文

新人教版八年级上册数学教案(集合12篇)

2024-09-25 18:50:09

【#实用文# #新人教版八年级上册数学教案(集合12篇)#】作为一名无私奉献的教师,编写教案是教学的基础,具有重要意义。那么应当如何写教案呢?下面是好工具范文网小编为大家整理的新人教版八年级上册数学教案,仅供参考,大家一起来看看吧。

新人教版八年级上册数学教案 篇1

一、教学目标:

1.了解方差的定义和计算公式。

2.理解方差概念的产生和形成的过程。

3.会用方差计算公式来比较两组数据的波动大小。

二、重点、难点和难点的突破方法:

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式

3.难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三、例习题的意图分析:

1.教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的.方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2.教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四、课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五、例题的分析:

教材xxx例x在分析过程中应抓住以下几点:

1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3.方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六、随堂练习:

1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数1 2 3 4 5

段巍13 14 13 12 13

金志强10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.xx的成绩比xx的成绩要稳定。

七、课后练习:

略。

新人教版八年级上册数学教案 篇2

【课题】:

初中数学——角平分线的概念与性质

【教学目标】:

知识技能:使学生理解并掌握角平分线的概念,学会用尺规作图作出一个角的平分线;理解并掌握角平分线的基本性质。

过程方法:通过观察、猜想、证明等活动,培养学生的逻辑推理能力和几何直观能力。

情感态度价值观:培养学生严谨的科学态度和勇于探索的精神。

【教学重点】:

角平分线的定义及作图方法

角平分线的基本性质

【教学难点】:

运用尺规作图准确做出角的平分线,并能自主探究并证明其基本性质。

【教学过程设计】:

一、导入新课 以实际生活中的实例引入,例如裁剪等分蛋糕,引导学生思考如何将一个角度平均分成两个相等的部分,引出角平分线的概念。

二、新课讲授

定义讲解:角平分线是指从一个角的顶点出发,把这个角分成两个相等角的射线。

尺规作图教学:演示并指导学生使用尺规作图法做出一个给定角的.角平分线。

角平分线性质讲解与证明:强调角平分线上的点到角两边的距离相等这一基本性质,引导学生尝试证明这个性质。

三、课堂练习 设计一系列与角平分线概念和性质相关的习题,让学生通过练习进一步理解和掌握所学知识。

四、小结与作业 带领学生对本节课内容进行总结,布置相关作业,包括理论知识复习和进一步的实践操作(如尺规作图)。

【板书设计】:

角平分线的定义

角平分线的尺规作图步骤

角平分线的性质及其证明过程

【教学反思】:

在实际教学后,反思学生对于角平分线的理解程度、操作技能掌握情况以及存在的问题,以便于调整后续的教学策略。

新人教版八年级上册数学教案 篇3

教学内容

本节课主要介绍全等三角形的概念和性质.

教学目标

1.知识与技能

领会全等三角形对应边和对应角相等的有关概念.

2.过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

3.情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值.

重、难点与关键

1.重点:会确定全等三角形的对应元素.

2.难点:掌握找对应边、对应角的方法.

3.关键:找对应边、对应角有下面两种方法:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)对应边所对的角是对应角,两条对应边所夹的角是对应角.

教具准备

四张大小一样的纸片、直尺、剪刀.

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

一、动手操作,导入课题

1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,思考得到的图形有何特点?

2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:

(1)何时能完全重在一起?

(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2.这时它们的三个顶点、三条边和三个内角分别重合了.

3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

新人教版八年级上册数学教案 篇4

一、教学目标:

1、加深对加权平均数的理解

2、会根据频数分布表求加权平均数,从而解决一些实际问题

3、会用计算器求加权平均数的值

二、重点、难点和难点的突破方法:

1、重点:根据频数分布表求加权平均数

2、难点:根据频数分布表求加权平均数

3、难点的突破方法:

首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析

1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、P141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

四、课堂引入

采用教材原有的引入问题,设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

五、随堂练习

1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

所用时间t(分钟)人数

0<t≤10 p="" 4

0<≤ 6

20<t≤20 p="" 14

30<t≤40 p="" 13

40<t≤50 p="" 9

50<t≤60 p="" 4

(1)、第二组数据的组中值是多少?

(2)、求该班学生平均每天做数学作业所用时间

2、某班40名学生身高情况如下图,

请计算该班学生平均身高

答案1.(1).15. (2)28. 2. 165

、课后练习:

1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

部门A B C D E F G

人数1 1 2 4 2 2 5

每人创得利润20 5 2.5 2 1.5 1.5 1.2

该公司每人所创年利润的平均数是多少万元?

2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

年龄频数

28≤X<30 4

30≤X<32 3

32≤X<34 8

34≤X<36 7

36≤X<38 9

38≤X<40 11

40≤X<42 2

3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

答案:1.约2.95万元2.约29岁3.60.54分贝

新人教版八年级上册数学教案 篇5

教学目标:

知识与技能:

学习并理解角平分线的定义,掌握如何画出一个角的平分线。

掌握角平分线的性质,并能运用性质进行相关几何题目的解题。

过程与方法:

通过动手操作和观察比较,引导学生发现角平分线的特性,培养学生的空间观念和逻辑推理能力。

通过实例分析和习题训练,让学生学会运用角平分线的性质解决实际问题。

情感态度价值观:

培养学生严谨细致的科学态度,体验数学与生活的紧密联系,激发学习数学的兴趣。

教学内容与过程:

一、导入新课

教师可以采用实物或教具展示角度分割的现象,提出问题:如何将一个角精确地分成两个相等的角?以此引入角平分线的概念。

二、讲解新知

角平分线定义:从一个角的顶点出发,到这个角两边上距离相等的任意一点的连线叫做这个角的平分线,这条线把这个角分成了两个相等的角。

教授如何画角平分线,可以借助量角器和直尺来演示具体步骤。

引入并阐述角平分线的性质:角的平分线上的点到这个角两边的距离相等。

三、实践应用

设计一组与角平分线相关的例题和练习题,让学生独立完成,教师在旁指导,以检验学生对新知识的`理解和应用能力。

四、课堂小结

带领学生回顾本节课所学的主要内容,包括角平分线的定义、画法及性质,并强调其在实际生活中的应用。

五、作业布置

布置一些包含角平分线知识点的习题,巩固和深化学生对本节课知识点的理解和运用。

教学建议:

在整个教学过程中,应注重启发式教学,鼓励学生积极参与、主动探索,同时关注学生的个体差异,提供针对性的教学支持。

新人教版八年级上册数学教案 篇6

一、教材分析

1、教材的地位和作用

角平分线的概念在第一册的教材中已介绍过,它的性质很重要,在几何里证

明线段或角相等时常常用到它们,同时在作图中也运用广泛,刚学过的运用HL

定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。

2、重点与难点分析

本节内容的重点是角平分线的性质定理,逆定理及它们的应用。

本节内容的难点是:

a、角平分线定理和逆定理的应用;

b、这两个定理的区别;

c、学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。

3、教学目标

(一)知识目标:

(1)掌握角平分线的性质定理和逆定理;

(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;

(二)能力目标:

(1)通过定理的推导,培养学生的归纳能力

(2)通过定理的初步应用,培养学生的逻辑推理能力及创新的能力.

(三)情感目标:

(1)通过学生的主动探索让学生体验获取数学知识的成就感;

(2)通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识事物的辩证思维方法。

二、教法学法

学生是学习的主体,只的学生真正融入到课堂教学中,学生才会深切地感受到数学带给他们的乐趣。这节课,我主要采用学生自己动手实践,观察,组织讨论等方法,多媒体引导,以学生为主,给学生提供足够的活动时间,充分发挥他们的个性,让学生在实践中感受知识的力量,通过观察,让学生在观察中发现,在发现中探索,在探索中创新。充分发挥他们的主观能动性,最大限度的发挥他们的创造力。让学生成为课堂的主人。教师只是在学生的思维受阻的情况下进行适时的引导。

三、教学过程

1、通过生活中的实例,创设情境

通过实例1的思考与探索,让学生复习了点到直线的距离这一概念。

通过实例2,给学生对角平分线有了一个初步的认识。

这一阶段的学习起到承上启下的作用,这两个例题的结合,为学生探索发现角平分线打下基础。

2、试一试

(1)作一个具体画图的练习:已知角画出它的'角平分线。

这样做让学生在动手画图的过程中对角平分线有一个很直观的认识

(2)折纸练习。

让学生在动手实践的过程中发现规律,体验获取知识的成就感。

3、观察

这一环节特别要注意的是,学生观察得出结论并不难,但要用准确的文字叙述出来比较难。教师一定要引导学生自己探索得出结论,要让每一个学生都能参与进来,都有收获。教师在讲解这一节知识时,一定要向学生渗透互逆的思想。

强调说明:角平分线的性质定理是用来证线段的相等,逆定理是用来证角相等即角平分线的。

4、例题

进行例题的讲解,引导学生分析,让学生熟悉定理的运用,在此过程中,要注意的是一定要严格要求学生的做证明题的书写格式。

5、阶梯性的练习

要注意引导学生分析问题、解决问题的思考方法,要让他们习惯于直接运用定理解决问题,而不是又回到运用全等来解决问题。

6、小结

教师引导学生对本节课的知识进行回顾,可以让学生站在一个新的高度来体会性质和判定的作用。

四、板书设计

角平分线

角平分线的性质定理例题练习

逆定理

以上是我对本节课的理解,不足之处请各位老师多多指教

新人教版八年级上册数学教案 篇7

【教学目标】

知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

【教学重难点】

重点:掌握用提公因式法把多项式分解因式.

难点:正确地确定多项式的最大公因式.

关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的.指数取最低次幂.

【教学过程】

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2);

(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;

(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

例1:把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2:分解因式:3a2(x-y)3-4b2(y-x)2

【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2·3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2·3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3:用简便的方法计算:

0.84×12+12×0.6-0.44×12.

【教师活动】引导学生观察并分析怎样计算更为简便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本115页练习第1、2、3题.

【探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本119页习题14.3第1、4(1)、6题.

新人教版八年级上册数学教案 篇8

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

三、练习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.P11习题16.1的`第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

新人教版八年级上册数学教案 篇9

一、指导思想

本学期,我们将在校长室及教务处的领导下,坚持学校制定的“以教学为中心,把质量当根本”的原则,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学生情况分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来能否升学。本人所教八年级2班,学生无尖子生,中等生多,有三分之一的学习不爱学习,问题较严重,要想获得理想的成绩,老师和学生都要付出努力,查缺补漏,充分发挥学生的主体作用,注重方法,培养能力。

三、教材分析

第十一章全等三角形,主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索全等三角形的条件。

第十二章,轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称,从整体的角度直观地认识并概括出轴对称的特征,通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章,实数主要包括算术平方根、平方根、立方根以及实数的有关概念和运算。

第十四章,一次函数通过对变量的考察,体会函数的概念,并逐步研究其中最为简单的一种函数,一次函数。了解函数的有关性质和研究方法,并初步形成利用函数观点认识现实世界的意识和能力。在教材中,通过体现“问题情境—建立模型—概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题。

第十五章,整式的乘除与因式分解,在形式上国求突出:整式及整式运算产生的实际背景使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程为探索有关运算法则设置归纳、类比等活动,对算理的理解和基本运算技能的掌握,设置恰当数量和难度的的符号运算,同时要求学生说明运算的依据。

四、教学措施

1、课堂上注重学生动手能力,排除学习中的障碍。

2、认真备课,精心授课,抓紧课堂四十分钟,努力提高课堂教学效果。

3、抓住关键,分散难点,突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素质。

5、教学中注重自主学习,合作学习,探险究学习。

6、精心设置教学情境,激发学生学习数学的兴趣,从生活入手,总结数学规律,立足于用数学知识解决生活中存在的实际问题。

7、加强对学生的课后辅导,发展优等生应用数学知识的能力,巩固中等学生的基础知识和学习成绩,促进后进生的进步。

8、成立互助学习小组,以优带良,以优促后,实现全体学生共同进步的目标。

五、教学目标

知识技能目标:认识实数,掌握实数有关的的运算方法;学习一次函数的图像、性质与应用;掌握全等三角形的性质与判定、轴对称及轴对称图形的特点;掌握整式的乘除运算、乘法公式和因式分解。

过程方法目标:初步建立数形结合的思维模式,学会观察、分析、归纳、总结几何图形的内在特点,学会使用数学语言表示数学关系。态度情感目标:从生活入手认识数学,探索数学规律,并将数学知识回归到生活之中。

新人教版八年级上册数学教案 篇10

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识、基本技能、基本思想和基本活动经验;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有的学生非常活跃,有少数学生不上进,思维不紧跟老师。还有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

“全等三角形”一章首先让学生认识形状、大小相同的图形,给出全等三角形的概念,然后让学生探索两个三角形全等的条件,并运用有关结论进行证明,最后掌握角的平分线的性质。

“轴对称”一章首先让学生认识轴对称,探索它的性质。然后让学生能够按要求作出简单图形经过轴对称后的图形,从而能利用轴对称进行图案设计。在此基础上,学习等腰三角形的有关概念和性质。这样,学生就可以从轴对称的角度把握等腰三角形的有关内容。

“实数”一章首先让学生了解算术平方根、平方根的概念,会用平方运算求某些非负数的算术平方根、平方根。然后让学生了解立方根的概念,会用立方运算求某些数的立方根。最后让学生了解无理数和实数的概念。

我们生活在变化的世界中,时间推移、人口增长、财富积累,都是变化的例子。函数就是描述这些变化的一种数学工具。通过分析实际问题中的变量关系,就得到了实际问题的一种新的数学模型,并能利用它解决非常广泛的问题。对于函数的内容,本套教科书是分散安排的,本册安排一次函数一章,八年级下册安排反比例函数,九年级下册安排二次函数、锐角三角函数。这样安排可以使学生不断加深对函数思想的理解。在本册“一次函数”一章,首先让学生探索具体问题中的数量关系和变化规律,了解常量,变量的意义,了解函数的概念和三种表示方法。在此基础上,再来学习一次函数的内容。在“一次函数”一章,专门安排“用函数观点看方程(组)与不等式”一节,分别探讨一次函数与一元一次方程,一次函数与一元一次不等式,一次函数与二元一次方程(组)之间的关系。由此可以看出本章在全套教科书中承上启下的作用。最后安排“课题学习选择方案”。

学生已经知道,可以用字母表示数,用含有字母的式子表示实际问题中的数量关系。对整式的进一步讨论,将使学生能够解决更多与数量关系有关的问题,加深对“从数到式”这个由具体到抽象的过程的认识。在“整式的乘除与因式分解”一章,首先让学生学会简单的整式乘除运算。在此基础上,让学生了解因式分解的概念,会用提公因式法,公式法分解因式。这些内容为以后内容,特别是下一章分式的学习作好了准备。

四、教学措施

1、加强教学“六认真”,面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

2、重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。

3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。

4、课后辅导实行流动分层。

新人教版八年级上册数学教案 篇11

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学生基本情况分析

本学期我任八(10)班的数学教学,从上学年期末考试情况来看,这个班学生的学习成绩都有所进步。但在学生所学知识的掌握程度上,形成了两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,而对后进生来说,简单的基础知识还不能有效的掌握,成绩较差。八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。根据上学年学生学习的分析情况来看,有部分学生基础特差,问题较严重。要在本期获得理想成绩,作为老师必须要付出更大努力,进一步查漏补缺,充分发挥学生学习的主体作用,注重教学方法,培养能力。

三、教材分析

本学期教学内容,共计五章:

第十一章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件,利用三角形全等的判定方法证明角平分线的性质。更多的注重学生推理意识的建立和对推理过程的理解,使学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章 轴对称立足于生活经验和数学活动经历,从生活中的图形入手,通过对生活中轴对称现象的观察,从整体的角度直观认识并概括出轴对称的特征;逐步分析角、线段、等腰三角形等简单的轴对称图形,进一步引入等腰三角形的性质和判定的概念。

第十三章 本章主要学习平方根与立方根以及实数的有关概念和运算。这一章是学生在初中学习过程中的一个里程碑,他们要从有理数进入到无理数的领域,认识上将从有理数扩展到实数的范围,让学生进一步深化对数的认识,扩大学生的数学视野与界限。

第十四章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。通过探索一次函数及其图象的性质,利用一次函数及其图象解决有关现实问题;并将正比例函数纳入一次函数的研究中去,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章 本章主要内容是整式的乘除运算、乘法公式以及因式分解。整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学任务

在知识与技能上,通过对三角形全等的学习,能利用全等三角形解决实际问题,让学生能把所学的轴对称知识应用到实际生活中,学习平方根与立方根以及实数的相关知识,初步理解函数的定义,掌握理解一次函数和一次函数的性质与图像及其应用,培养数形结合的思想方法,使学生会进行整式的乘除法运算及因式分解。通过本学期的学习,学生在数学的认识与理解上要再上一个台阶。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。在过程与方法上,通过学生积极参与对知识的探究,经历发现知识以及知识间的内在联系,让学生经历在发现知识道路上的坎坎坷坷,从而达到深刻理解掌握知识的目的。在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,全面提高学生素质。

五、教学措施

1、加强学生的思想品德素质教育,转变学生的学习态度。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、教学中抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

5、认真研读教材,不断改进教学方法,提高教学水平及自身业务素养。

6、教学中注重自主学习、合作学习、探究学习。

新人教版八年级上册数学教案 篇12

一、内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念;

(2)会用工具画三角形的高、中线与角平分线;

2.教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

推荐阅读

小编精心推荐

人教版八年级上册 | 八年级上册数学课件 | 八年级上册 | 人教版八年级
上一篇:冬至发朋友圈怎么说(必备五篇) 下一篇:幼儿园开学第一课活动方案(集合九篇)
back_img
推荐标签