back_img
好工具 >范文 >实用文

新人教版八年级数学教案(必备九篇)

2024-09-23 17:30:08

【#实用文# #新人教版八年级数学教案(必备九篇)#】作为教育工作者,我们需要不断编写优质的教案,以提高教学质量,实现预期的教学效果。写教案需要注意哪些格式呢?下面是好工具范文网小编整理的人教新版八年级数学上册教案,希望对大家有所帮助。

新人教版八年级数学教案 篇1

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系。

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解。

本节课的教学重点:三角形中的相关概念和三角形三边关系。

本节课的教学难点:三角形的三边关系。

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。

(2)理解并且灵活应用三角形三边关系。

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素。

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神。

四、教学过程设计

1.创设情境,提出问题

问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,指出其不完整性,加深学生对三角形概念的理解。

【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解。

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力。

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法。

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡。

【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用。

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来。

1.以AB为一边的三角形有哪些?

2.以∠D为一个内角的三角形有哪些?

3.以E为一个顶点的三角形有哪些?

4.说出ΔBCD的三个角。

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解。

4.拓广延伸,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法。

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解。

新人教版八年级数学教案 篇2

一、内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念;

(2)会用工具画三角形的高、中线与角平分线;

2.教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

新人教版八年级数学教案 篇3

教学准备

教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.

学生准备:复习,平行四边形性质;学具:课本“探究”内容.

学法解析

1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.

2.知识线索:

3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.

教学过程

一、回顾交流,逆向思索

教师提问:

1.平行四边形定义是什么?如何表示?

2.平行四边形性质是什么?如何概括?

学生活动:思考后举手回答:

回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

回答:2.平行四边形性质从边考虑:

(1)对边平行,

(2)对边相等,

(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).

教师归纳:(投影显示)

平行四边形【活动方略】

教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.

学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:

(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.

(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

新人教版八年级数学教案 篇4

一.教学目标:

1.了解方差的定义和计算公式。

2.理解方差概念的产生和形成的过程。

3.会用方差计算公式来比较两组数据的波动大小。

二.重点、难点和难点的突破方法:

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式

3.难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三.例习题的意图分析:

1.教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2.教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四.课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五.例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3.方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六.随堂练习:

1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数1 2 3 4 5

段巍13 14 13 12 13

金志强10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.段巍的成绩比金志强的成绩要稳定。

七.课后练习:

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

选择小兵参加比赛。

新人教版八年级数学教案 篇5

一、教材分析

1.教材的地位与作用

平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.

本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.

另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

2.教学目标:

知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

3.教学重点、难点:

重点:理解并掌握平行四边形的概念及其性质.

难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

4.教材处理:

基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.

首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.

然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.

最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.

总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.

二.教学方法与手段

本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.

新人教版八年级数学教案 篇6

一、教学目标:

1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

2、能力目标:

①,在实践操作过程中,逐步探索图形之间的平移关系;

②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

二、重点与难点:

重点:图形连续变化的特点;

难点:图形的划分。

三、教学方法:

讲练结合。使用多媒体课件辅助教学。

四、教具准备:

多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

五、教学设计:

创设情景,探究新知:

(演示课件):教材上小狗的图案。提问:

(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的'想象力。

畅所欲言,互相补充。

课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

课堂练习:

小组讨论。

小组讨论完成。

例子一定要和大家接触紧密、典型。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

六、教学反思:

本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

新人教版八年级数学教案 篇7

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

新人教版八年级数学教案 篇8

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

三、练习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.P11习题16.1的`第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

新人教版八年级数学教案 篇9

一、教学目标:

1、加深对加权平均数的理解

2、会根据频数分布表求加权平均数,从而解决一些实际问题

3、会用计算器求加权平均数的值

二、重点、难点和难点的突破方法:

1、重点:根据频数分布表求加权平均数

2、难点:根据频数分布表求加权平均数

3、难点的突破方法:

首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析

1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的.意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、P141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

四、课堂引入

采用教材原有的引入问题,设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

五、随堂练习

1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

所用时间t(分钟)人数

0

0<≤ 6

20

30

40

50

(1)、第二组数据的组中值是多少?

(2)、求该班学生平均每天做数学作业所用时间

2、某班40名学生身高情况如下图,

请计算该班学生平均身高

答案1.(1).15. (2)28. 2. 165

、课后练习:

1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

部门A B C D E F G

人数1 1 2 4 2 2 5

每人创得利润20 5 2.5 2 1.5 1.5 1.2

该公司每人所创年利润的平均数是多少万元?

2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

年龄频数

28≤X<30 4

30≤X<32 3

32≤X<34 8

34≤X<36 7

36≤X<38 9

38≤X<40 11

40≤X<42 2

3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

答案:1.约2.95万元2.约29岁3.60.54分贝

推荐阅读

小编精心推荐

人教版八年级 | 八年级数学教学 | 八年级数学教师 | 八年级数学教学总结
上一篇:七夕节日记400字左右(精华七篇) 下一篇:敬老活动主持稿怎么写(精品10篇)
back_img
推荐标签