【#实用文# #有理数课件(精华11篇)#】为使学生掌握有理数减法法则并熟练地进行有理数减法运算;如下是小编给大家整理的人教版七年级上册数学有理数课件,希望对大家有所作用。
有理数课件 篇1
尊敬的各位评委、各位老师,我是来自洪洞县有理数的加法大槐树一中的数学教师,我叫xxx,今天的说课题目是【有理数的加法法则】第一节。
我们知道有理数是整个代数的基础,而有理数的加法运算又是初中数学的基本运算,因此可以说有理数这一章,是整个初等数学的奠基石,它所隐含的丰富的内容反映了中学阶段许多重要的数学思想方法。
下面我将从4个方面来阐述我对这节课的理解和设想:
教材分析;教法分析;学法指导;教学过程
一、教材分析:
在教材分析中我将谈一下几点:
(一)、教材的地位与作用:
【有理数的加法法则】是初中华师版七年级上册第二章第六节的内容,在这之前,学生已经在小学掌握了算术运算,而前边的学习又初步掌握了有理数的基本概念,有理数的加法运算是建立在小学运算的基础之上的,又与小学加法运算有很大的区别,如小学的加法运算不需要确定符号运算单一,而有理数的加法不但要计算绝对值的大小而且还要确定结果的符号,由算术到代数式学生从小学到初中的一个新的转折点。而有理数的加法又是有理数运算的主要内容是初等数学运算的基础,同时又是学习物理、化学等相关学科的基础。因此,这部分内容在学习数学及其他方面占有相当重要的地位及作用。
(二)、教学内容:
有理数的加法的教学共分2课时,这是有理数的加法第一课时。本节课主要讲授有理数加法的意义,归纳有理数加法的法则,能区别有理数的和与小学运算的和的不同,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。
(三)、教学目标:
倡导有理数的加法要以学生为主,让学生参与"观察、猜想、验证、归纳、运用"的全过程。以培养创新意识与培养能力为宗旨。从教材的特点和初一学生的认知水平,以教学思维为出发点。我设计如下的教学目标:
1、知识目标:使学生有理数加法的意义,掌握有理数加法的法则,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。
2、能力目标:在本节课的教学中,借助数轴向学生渗透数形结合的思想,利用绝对值把有理数的加法运算化归为小学算术的加减运算,体现化归的思想,以及适度加强法则的形成过程,着重培养学生"观察、猜想、验证、归纳、运用"等综合能力。
3、情感目标:遵循学生学习的认知规律和初一学生的身心特点,按照启发式教学原则用发现法和直观教学法激发学生探究教学的兴趣,培养学生敢于探索、乐于创新的精神。
4、教学重点、难点和教学关键:
本节课的教学重点是:有理数加法的法则
难点是:异号两数相加的法则,不仅要确定喝的符号而且表明上的和是化归为算术减法来解决的,学生不好掌握,因此我确定本节课的难点是异号两数相加的法则;
解决问题的关键是有理数加法中结果符号的确定。
二、教法分析:
为了充分调动学生的积极性,变被动学习为主动学习使教学生动、有趣、高效,我采用启发式教学,发现法教学形成性学习和多媒体教学手段共用,考虑到学生目前仍以直观思维为主,在教学中,我采用针对性较强的相应措施。首先,我创设具体的问题情景运用多媒体手段进行必要的动态演示,让学生看的清楚,听的明白逐步从图形的直观向深化过渡,最后向抽象思维过渡,引导学生观察与思考,以增强教学的直观性、有效性;其次,引导学生从特殊到一般的探究,师生共同归纳出有理数的加法法则,以以增强教学的直观性、有效性、深刻性这既是形象思维转化为抽象思维的过程,也是对学生观察、归纳思维能力的过程,再让学生参与知识的形成过程,促进认知结构的建构,培养学生活动知识的能力,从而使学生在学习知识的过程中,获得成功的体验。
三、学法指导:
课堂教学要体现以学生的发展为本,为充分体现教师为主导、学生为主体的教学原则,我采用启发式教学原则,通过提出问题,多媒体的直观演示和学生一起分析,归纳出法则。始终让学生参与整个问题的全过程,在整个教学过程的设计中力求发挥学生的主体意识,尽情创造性的学习,无论在法则的形成,还是法则的运用数学思想方法的'渗透,都避免教师的灌输方法,有意识的让学生主动观察、比较、分类、归纳积极思考,教师在教学中加以引导、及时点拨,激发学生的探索精神和求知欲望,培养学生的学习数学的主动性,让学生在愉悦的气氛中感受到数学学习的无限乐趣。
四、说教学过程:
1、首先我通过简明扼要的语言引导学生回顾小学数学运算的过程,类比联想到在学习有理数后,必然要学习有理数的加法。接着我提出问题,然后教师启发、引导学生。这些问题是求物体两次向同一方向运动的喝的问题,如何求解呢?联系小学学习过的加法意义,学生很快就能打出用加法。这样引出课题
2、然后设置这样一个问题情景,利用动态演示带领学生进行新课探索,首先我提出问题"两次一共向东走了多少米?"用什么方法呢?接着我提醒学生注意审题,暗示学生题中没有明确小明朝那个方向走,通过暗示,引导学生思考。在这里,为了区别"向东"还是"向西"走,"我们规定向东走为+,向西走为—"南无小明共有几种走法?在教师提出问题之后,学生分组讨论,最后引导学生得出有"同向""异向"两种情况,【我在这个问题中,没有明确提出小明的走向,其目的是让学生积极思考】接着动态演示图像情况,在演示之前,我提醒学生注意观察演示过程。 "小明向东走了20米,第二次又向东走了30米,那么两次一共向东走了多少米?"接着看图形的第二种情况"小明向东走了—20米,也就是向西走了20米,第二次又向东走了—30米,也就是向西走了30米。那么两次一共向东走了多少米?"通过演示,很容易得出两次一共走了—50米。得出算式,之后,去我引导学生对算式进行分析,从中发现规律得出同号的加法法则。在总结出同号的加法法则后,我又引导学生讨论逆向的情况,在这里仍然提醒学生注意下面的演示过程。"小明向东走了20米,第二次又向东走了—30米,那么两次一共向东走了多少米?"学生讨论得出—10米,通过演示,接着让学生思考第二种逆向情况:"小明向东走了—20米,第二次又向东走了30米,那么两次一共向东走了多少米?"学生分组讨论可以得出走了10米。得出算式"(—20)+(+30)=+10"通过两次演示逆向运动,学生仔细观察,引导学生动口、动脑及思考后,得出两次运动的和,师生归纳出异号下的加法法则。结论:"绝对值不相等的异号两数相加,取绝对值较大的加数的符号经用较大的绝对值减去较小的绝对值"、在这里,我通过简明的动态演示,是学生的注意力集中到问题本身,同时问题的演示,更容易突破难点。
3、接着我又提出问题2"在东西走向的马路上小明从O点出发,向东走了20米,又向西走了—20米,那么两次一共走了多少米?"利用动态演示,学生很容易得出"互为相反数的两数相加得0"之后我又提出问题3"在东西走向的马路上小明从O点出发,向东走了20米,又向西走了0米,那么两次一共走了多少米?"学生很容易得出"一个数与0相加,仍得0"从而利用上面的演示过程,归纳出有一个加数为0的法则。
4、至此,通过师生多种情形的归纳,一起归纳出有理数的加法法则
【1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号经用较大的绝对值减去较小的绝对值;3、互为相反数的两数相加得0 4、一个数与0相加,仍得0】
意义上教学过程通过多媒体演示,把数、式、形的静变为动,以增强法则的直观性,加深法则的理解,突出本节课的重点、突破难点,同时也增强了数形结合的思想运用,在归纳出法则后,我有进一步启发引导学生分析法则的特点,并总结规律"两有理数相加,所得的和为符号和和两部分组成,加法运算的关键是福海的确定,符号运算一旦解决,余下的就是小学算术的加减问题了"在这里,我给出两个具体的实例通过对他们的分析得出:
(—4)+(—8)= —(4+8)=—12
同号两数相加取相同的符号通过绝对值化归为算术数和的过程
(—9)+(+2)= —(9—2)=—7
异号两数相加取绝对值较大符号通过绝对值化归为算术数减的过程
总结:同号两数之和——名副其实的和——做加法
异号两数之和——表面是"和"实际上是做减法。
运算步骤:
1、先判断类型:同号还是异号;
2、确定和的符号;
3、后进行绝对值的加减运算
简单归为:8字诀——符号法则+算式加减
通过以上的设计,进一步加深了对法则中难点问题的理解之后教师引导学生归纳出运算步骤,然后又教师归纳出加法法则。
4、这时我又提出另一个问题"两个正数相加,和一定大于每个加数吗?那么在有理数的范围内,又有怎样的情形呢?"通过设问,引导学生思考,教师引导学生通过有理数的和与小学学习的算术的和区别,由师生共同得出结论
【设置这个问题的目的在于使学生感受类比的数学思想是他们善于比较知识的联系与区别,提高联想记忆强度】
5、接下来我又设置了一道改错题:
【设置问题,强化关键:判断正误,并改错1、两个负数相加,绝对值相加;2、正数加负数,何谓负数;3、负数加正数,和为正数;4、两个有理数和为负数时,着两个有理数都是负数】
它是专为学生在运用法则时易出错的问题而设计的为促使学生在引用时仔细审题,通过分析辩误,抓住关键。
6、为了完成从掌握知识到引用知识的转化,使知识教学与智能训练相结合,我设置了以下例、习题易培养他们的逻辑思维和严密的计算能力,下面的这组练习由浅入深、循序渐进的原则,其目的在于巩固法则,加深对法则的理解和记忆,练习2通过强化与训练,使学生熟中生巧、将知识转化为技能,也为以后的学习奠定基础。
计算下列各题:
例题1、(—6)+(—8)2、5、2+(—4、5)
练习:1、计算下列各题:并说明理由(1)、(—4)+(—7)
(2)、(—4)+(+7)(3)、(+4)+(+7)
(4)、(—4)+(+4)(5)、(—9)+0
练习:2、计算下列各题:
(1)、15+(—22)(2)、(+0、9)+1、5(3)、(+2、7)+(—3、5)
7、到这时,整个教学过程也接近尾声了,为了是学生对所学知识有一个完整的框架,利于学生对知识的理解和记忆,师生共同合作,从以下三方面进行小结:1、本节课学习的主要内容;2、运用有理数加法法则的关键问题;3、本节课所涉及的数学思想方法【这样小结,其目的是梳理了知识,有点明了本节课的学习要点,同时使学生对本节知识体系有一个完整的认识,为下节课的学习打下良好的基础】
8、作业布置:(必做)练习2、3、4、(选作)习题1、2
【作业布置是为了发现弥补学生知识掌握的不足强化技能训练;另外作业的布置体现了分层教学,满足了不同学生的不同要求,达到了分层优化的目的,从而培养了学生良好的学习习惯和品质】
9、最后是我的板书设计:
课题:有理数的加法法则
法则小结
步骤与口诀布置作业
结论
以上是我从四个方面阐述了本节课"教什么,怎么教,有理数的加法为什么这样教"希望各位专家、老师对本节课提出宝贵意见,再次谢谢各位评委老师。
有理数课件 篇2
各位评委、老师:
大家好!今天我授课的课题是“有理数的加法(二)"。下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析与处理
有理数的加法运算律在整个知识系统中的地位和作用是很重要的。初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
根据教学大纲的要求,来确定本节课的教学目标。教学总目标为通过本节课的学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。具体从以下三方面而言:一、 知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。二、过程方法: 培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。教学重点:有理数的加法运算律的理解与掌握。教学难点:灵活运用加法运算律使运算简便。
二、教学方法和数学手段
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的运算律,并进行总结。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
三、教学过程的设计
1、回顾:回顾上节课的内容—有理数的加法法则。让同学回忆之前的内容,渐渐进入学习状态。
2、引入:在引入上,让同学们运用加法法则进行计算 ,并提出问题,引导学生进行观察和思考。让学生自已动脑思考问题,使同学在解决问题的同时产生一种成就感,从而更加积极主动的学习,并且营造了良好的学习氛围。
3、授课:法则的得出重在体现知识的发生,发展,形成过程。通过同学的观察和思考,并在老师的指导下总结出有理数的运算律:加法交换律和加法结合律在有理数范围内适用。并准备一些相应的例题,主要采取讲练结合的方式,边做边总结。
4、课堂小结:归纳总结由学生完成,老师做适当的补充和引导。最后教师对本节课进行最后的说明和归纳。
5、随堂练习:在习题的配备上,我特别注意针对性,所以习题的配备虽简却精。主要让学生在练习的过程中能够对本堂课的内容理解进一步加深,同时注重调动学生的积极性,使学生在一种比较活跃的氛围中学习,并解决问题。
6、作业设计:作业的设计旨在学生对本节课的知识进行复习和巩固,主要起到延续课堂的作用,让同学们对知识的掌握更加牢固。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
有理数课件 篇3
教学目标:
知识能力:
理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:
经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:
通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
会把所给的各数填入它所属于的集合里
教学方法:
问题引导法
学习方法:
自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数
2._______和_________统称为分数
3.__________统称为有理数
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:__________;正整数:__________、负整数:__________、正分数:__________、负分数:__________.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.b
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是()
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数
(2)零是整数,但不是自然数
(3)分数包括正分数和负分数
(4)正数和负数统称为有理数
(5)一个有理数,它不是整数就是分数
五、总结与反思:
通过本节课的学习,你有什么收获?
六、作业:
必做题:课本14页:1、9题
有理数课件 篇4
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:
1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:
①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?
②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回"研究生"共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0.
3、 一个数同0相加,仍得这个数
老师总结口诀:"同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑".
【设计意图】感受两个有理数相加的各种情况。用表格的`形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9)。
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值。
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用">"或"<"填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b<0,|a|>|b|,那么a+b____0;
(4) 如果a<0,b>0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成"算必有据"的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)
(4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,()不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过"问题串"的设置,激发兴趣,引起学生深层次的思考;
2.通过"互举例子"、"小组竞赛"两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数课件 篇5
教学目标
1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;
2、会用计算器进行较繁杂的有理数混合运算。
教学重点
1、有理数的混合运算;
2、运用运算律进行有理数的混合运算的简便计算。
教学难点
运用运算律进行有理数的混合运算的简便计算。
有理数的混合运算的运算顺序
也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:
先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。
你会根据有理数的运算顺序计算上面的算式吗?
2、8有理数的混合运算:同步练习
1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。
《2、8有理数的混合运算》课后训练
1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?
有理数课件 篇6
教学目标
1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;
3.会用科学记数法表示较大的数.
教学重点
1.有理数乘方的意义,求有理数的正整数指数幂;
2.用科学记数法表示较大的数.
教学难点
有理数乘方结果(幂)的符号的确定.
教学过程(教师)
问题引入
手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?
乘方的有关概念
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
有理数的乘方:同步练习
1.对于式子(-3)6与-36,下列说法中,正确的是()
A.它们的意义相同
B.它们的结果相同
C.它们的意义不同,结果相等
D.它们的意义不同,结果也不相等
2.下列叙述中:
①正数与它的绝对值互为相反数;
②非负数与它的绝对值的差为0;
③-1的立方与它的平方互为相反数;
④±1的倒数与它的平方相等.其中正确的个数有()
A.1B.2C.3D.4
有理数课件 篇7
教学目标
1.使学生理解有理数倒数的意义;
2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;
3.培养学生观察、归纳、概括及运算能力.
教学重点和难点
重点:有理数除法法则.
难点:商的符号的确定.
教学过程
(一)、从学生原有认知结构提出问题
1.叙述有理数乘法法则.
2.叙述有理数乘法的运算律.
3.计算:
(1)3×(-2); (2)-3×5; (3)(-2)×(-5).
(二)、导入新课
因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;
同样-3×5=-15,解简易方程-3x=-15,得x=5.
在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.
三、讲授新课
1.有埋数的倒数
0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)
提问:怎样求一个数的倒数?
答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分
数再求倒数.
什么性质
所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.
这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.
2.有理数除法法则
利用有理数倒数的概念,我们进一步学习有理数除法.
因为(-2)×(-4)=8,所以8÷(-4)=-2.
由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即
除以一个数等于乘以这个数的倒数.
0不能作除数.
例1 计算:
课堂练习
(1)写出下列各数的倒数:
(2)计算:
3.有理数除法的符号法则
观察上面的练习,引导学生总结出有理数除法的商的符号法则:
两数相除,同号得正,异号得负.
掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:
两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不为0的数,都得0.
≠0).利用除法法则可以化简分数.
例2 化简下列分数:
例3 计算:
(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.
(四)、小结
1.指导学生看书,重点是除法法则.
2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.
练习设计
习题2.12 1、2、3、4、5、6题
有理数课件 篇8
1.教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。
另一方面,课本知识的传授是符合学生的认知发展特点的在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。
1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。
能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。
情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。
1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。
2.重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。
2.2教学难点:异号两数加法的实际意义及法则的归纳。
3.教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。
在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。
4.教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。
说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。
4.2体验进程,让学生的思维“活”起来
“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。
[开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?
设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。
教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。
预计困难:
①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。
②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。
处理方法:
①教学中学生思维上的'弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。
③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。
教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。
4.3探究规律,让学生的思维“跳”起来
用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。
预先设想学生思路,可能从以下方面分类归纳,探索规律:
①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)
②从加数的不同数值情况(加数为整数;加数为小数)
③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)
④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)
⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)
教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。
4.4注重反思,让学生的思维“深”下去
[反思应用1]例1:计算(—3)+(—9);(—4.7)+3.9;
[反思应用2]例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?
设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化。这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题。培养学生的“数学化”意识。
4.5拓展应用相结合,让学生的思维得以升华
[练习1]计算15+(—22);(—13)+(—8);
[练习2]用算式表示下列结果:
⑴温度由—4C上升7 C ⑵收入7元,又支出5元
[练习3]火眼金睛找错误:
+
=-1.7
②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在()
A.文具店B。玩具店C。文具店西边40米处D。玩具店西边60米处
C组:
①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数
②为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,—4,+13,—10,—12,+3,—13,—17
⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?
⑵若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要。A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力。
有理数课件 篇9
一、 教材分析
本节所讲的是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
本章内容是有理数及其运算,在一定意义上讲,它是全新的,但必须充分认识到它是小学所学的四则运算的继承和发展,就本节内容来看,有理数的减法运算是建立在刚刚学过的有理数加法运算基础上的,这一节课是前面所学知识的继续,又是后面学习有理数混合运算的基础,起着承前启后的作用。有理数的减法对学生来说是比较难学的,特别容易和前面的加法混淆。初学时,学生的正确率不高,所以要通过对法则的透彻理解和大量的练习才能达到熟练的地步。
这节课首先从某一天的温差出发,引入有理数减法,使学生体会减法在实际生活中的应用,通过减法是加法的逆运算得出答案。在此基础上,归纳出有理数的减法法则,然后根据法则进行计算,最后又以两个实际问题进行运用,使数学计算变得生活化,数学课变得活泼一些,没有这么枯燥无味。
根据上述教材结构以及本人对教材的理解和分析,确定本节课的教学目标如下:
1、 经历探索有理数减法法则的过程,理解有理数减法法则。
2、 能熟练地进行有理数减法的运算。
3、 为学生创设熟悉的生活环境,使其在轻松愉快中体会数学知识在实际生活中的应用。
教学重点:有理数减法法则的理解及熟练运用法则计算。
难点:探索有理数减法法则,正确完成减法与加法的转化
二、 学情分析
七年级学生性格开朗活泼,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境应当生动活泼,直观形象,贴近学生的生活。由于刚升入初中,学生的智力,基础,学习习惯都有较大的差异,很多同学会出现符号处理有误,法则选择不灵活等问题。因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正加强交流与合作。
三、教法分析
本节课的教学遵循了启发性的教学原则,注意渗透了转化的数学思想。按照“教师为主导,学生为主体”的教学观,倡导学生主动参与,让学生在应用旧知识的过程中探究,通过老师的引导启发得到新的结论。通过比较分析,应用获得新知识,从而达到理解并掌握的目的。
四、 教学程序设计
1、 创设情境,引入课题
某一天,某地的最高气温是40C,最低气温是-30C,你能从温度计上看出40C比-30C高多少度吗?(用多媒体投影仪投影出温度计的图片)
设计意图:从学生的生活经验和已有的知识背景出发让他们从生活中去发现数学。
昨日气温是-10C,再降30C是多少度?
学生根据小学掌握的知识都能理解,是用减法运算。让学生列出算式,同时板书课题:有理数的减法。
4-(-3)= -1-3=
2、提出问题,大胆猜想,观察探索,得出结论。
4-(-3)=?引导学生回想小学学过的加法和减法互为逆运算。被减数=差+减数,即?+(-3)=4
学生通过观察很容易得出:7+(-3)=4,所以:4-(-3)=7
在学生学生得出4-(-3)=7后,老师引导学生填空:4+ 3 =7。对这两个算式加以比较,找到不同的地方在哪里。然后再引导学生得出:-1-3=?采用类比的方法,得出答案。
刚才两个算式:4-(-3)=4+3=7,-1-3=-1+(-3)=-4,从左到右哪些发生了变化?有没有不变的数?能得到哪些结论?请用一句话把这个结论概括出来。
学生分组讨论、交流后,由小组长代表发言,看哪一组的同学概括得最精炼。(设计意图:采用小组竞赛的形式,调动学生的学习积极性)。
最后由教师和同学一起总结归纳有理数减法法则:减去一个数,等于加上这个数的相反数。
3、 验证结论
完成课本62页的填空题
(设计意图:从提出猜想到得出正确结论之间有一个探索验证的过程。只有通过大量的不同类型的题目的验证,才有说服力,才能使这个法则得到运用。
4、 运用法则
例1:计算下列各题
(1)9-(-5) (2)(-3)-1 (3)0-8 (4)(-5)-0
要求学生按照法则规范写出解题过程,可请些成绩不太好的学生上来演板,不要怕学生出现错误,对没有做对的同学要找到出错的原因,予以纠正。特别是(2)(3)小题,估计有不少学生写成:(-3)-1=-3+1,0-8=0+8,错误认为题目中的减号,又是负号,导致“一号两用”,运算符号和性质符号不分。
例2,例3(投影仪投影)是实际应用题
(设计意图)让学生充分认识到数学来源于生活,又服务于生活,享受在经历苦苦探索之后而轻松解题带来的快乐心情。
巩固练习:课本63页,随堂练习第1题。
(设计意图)在学生各自独立完成的基础上,以小组为单位进行检查,由做得既快又准的同学负责指导本组内学习有困难的同学,这样,可以激发学生的兴趣,培养合作精神。
补充练习:1、-7比-2大多少?
2、选择:下列说法正确的是
A.减去一个数等于加上这个数 B.减去一个数仍得这个数
C.a-b=a+(-b) D.两个数的差一定比被减数小
(设计意图)此题考察学生的综合能力,对概念的理解程度选择题最容易出错。概念要理解得非常透彻才能答对。
5、 拓展,延伸
试一试,相信你一定会做!
钟面上有1、2、3、……、12,共十二个数字,试在某些数的前面添加负号,使它们的和为零。
(设计意图)对学有余力的学生来说,是一次小小的挑战,但数学的乐趣在于不断探究,永不止步,永攀高峰!
6、 总结:
通过这节课的学习,你学到了什么?有什么困惑?
注意:运用有理数法则时的“两变”,“一不变”。
两变:减号变加号,减数变成它的相反数。
一不变:被减数保持不变。
有理数的减法转化为加法,体现了数学中的“转化”思想。
(设计意图)鼓励学生大胆提出自己的困惑和质疑,既培养了学生的信心,又提高了表达能力。
7、 布置作业:63页至64页,1、2、4
利用课堂作业及时反馈学生的掌握情况。
有理数课件 篇10
教学目标
1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.
2、能力目标:能应用正负数表示生活中具有相反意义的量.
3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点
重点:理解有理数的意义.
难点:能用正负数表示生活中具有相反意义的量.
教学过程
一、创设情境、提出问题
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.
二、分析探索、问题解决
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题.
讲授正数、负数、有理数的定义.
用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.
三、巩固练习
1、用正数或负数表示下列各题中的数量:
(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作:
(2)球赛时,如果胜2局记作+2,那么-2表示:
(3)若-4万表示亏损4万元,那么盈余3万元记作:
(4)+150米表示高出海平面150米,低于海平面200米应记作:
分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.
2、下面说法中正确的是().
a.“向东5米”与“向西10米”不是相反意义的量;
b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;
d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.
三、小结回顾、纳入体系
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数.
分类:有理数的分类:两种分法.
应用:有理数可以用来表示具有相反意义的量.
有理数课件 篇11
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例1 计算:
例2 某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0。001); (5)-4。8×(-1。25); (6)-4。5×(-0。32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.