back_img
好工具 >范文 >实用文

不等式解法教案分享

2024-07-02 15:24:03 不等式解法教案

【#实用文# #不等式解法教案分享#】在教学工作者实际的教学活动中,编写教学设计是必不可少的,教学设计是实现教学目标的计划性和决策性活动。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的不等式和它的基本性质教学设计,仅供参考,欢迎大家阅读。

不等式解法教案 篇1

根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,难点是用基本不等式求最值。本节课是基本不等式的第一课时。

在新课讲解方面,我仔细研读教材,发现本节课主要是让学生明白如何用基本不等式求最值。如何用好基本不等式,需要学生理解六字方针:一正二定三等。这是比较抽象的内容。尤其是“定”的相关变化比较灵活,不可能在一节课解决。因为我把这部分内容放到第二节课。本节课主要让学生掌握“正”“等”的.意义。

我设计从例一入手,第一小题就能说明“积定和最小”,第二小题说明“和定积最大”。通过这道例题的讲解,让学生理解“一正二定三等”。然后再利用这六字方针就最值。这是再讲解例二,让学生熟悉用基本不等式解题的步骤。然后让学生自己解题。

巩固练习中设计了判断题,让学生理解六字方针的内涵。还从“和定”、“积定”两方面设计了相关练习,让学生逐步熟悉基本不等式求最值的方法。

课堂实施的过程中以学生为主体。包括课前预习,例题放手让学生做,还有练习让学生上台板书等环节,都让学生主动思考,并在发现问题的过程中展示典型错误,及时纠错,达到良好的效果。

不足之处是:复习引入的例子过难,有点不太符合文科学生的实际。且复习时花的时间太多,重复问题过多,讲解琐碎;例题分析时不够深入,由于担心时间不够,有些问题总是欲言又止。练习题讲解时间匆促,没有解释透彻。

不等式解法教案 篇2

一、课程内容剖析:

1、教材内容影响力和功效

这节课是数学(基本控制模块)上册第二章第三节《一元二次不等式》。从内容上看它是大伙儿初中学过的一元一次不等式的扩宽,此外它也与一元二次方程、二次函数正中间联系紧密联系,牵涉到的专业知识方面较多。从观念方面看,这节课突显本现了数形结合观念。另外一元二次不等式是处理函数定义域、值域等难题的关键专用工具,因而这节课在全部初中数学中具备较关键的影响力和功效。

2、课程目标

专业知识总体目标:正确认识一元二次不等式、一元二次方程、二次函数的关联。熟练掌握一元二次不等式的解法。

能力总体目标:塑造数形结合观念、抽象思维能力和形象思维能力。

观念总体目标:在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。

感情总体目标:根据实际情境,使学生感受数学与实践活动的密切联系,体会数学风采,激起学生求知冲动。

3、重点难点

重要:一元二次不等式的解法。

难点:一元二次方程,一元二次不等式与二次函数的关系。

二、学生状况剖析:

大家的学生是在学了一元一次不等式,一元一次方程、一元一次涵数,一元二次方程的基本上学习培训一元二次不等式。但大多数数学生的基本都并不是非常好,解一元二次方程有一定的艰难。

三、课堂教学环境分析:

教学环境应包含和睦的师生关系、多媒体系统的有效运用、优良的课堂教学机构、有效的难题情境。构建和睦的师生关系有益于提升学习兴趣,大家院校要创建和睦的师生关系是必须花许多思绪的,非常是学生就业班的同学们,且要有一个非常长的融入時间。大家院校的每名教师都是有手提电脑,每间课室都是有宽屏电子器件显示屏,教师都能灵活运用多媒体设备的应用。应用信息化教学效果非常的好、学生非常容易了解、学习培训的主动性高。上课的时候较为留意构建适合的难题情境,实际效果会非常好,学生从日常生活具体考虑,回应所提的难题,不经意间学了新的专业知识,她们不容易觉得到学习培训疲惫,反倒能积极地学习培训。

四、课程目标剖析:

专业技能与专业能力:正确对待一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。

全过程与方式 :根据看图像找解集,塑造学生从从形到数的转换能力,从实际到抽象性、从独特到一般的梳理归纳能力;根据对难题的思索、研究、沟通交流,塑造学生优良的数学沟通交流能力,提高其数形结合的逻辑思维观念。在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。

感情心态与价值观念:根据实际情境,使学生感受数学与实践活动的密切联系,激起学生学习培训科学研究一元二次不等式的主动性和对数学的感情,使学生充足感受获得专业知识的取得成功体会;在研究、探讨、沟通交流全过程中塑造学生的协作观念和团队意识,使其培养认真细致的治学心态和优良的思维习惯。

不等式解法教案 篇3

(一)教学目标

1.知识与技能:使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容。

2.过程与方法:以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系;

3.情态与价值:通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。

(二)教学重、难点

重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

难点:用不等式(组)正确表示出不等关系。

(三)教学设想

[创设问题情境]

问题1:设点A与平面的距离为d,B为平面上的任意一点,则d≤。

问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?

分析:若杂志的定价为x元,则销售的总收入为万元。那么不等关系“销售的总收入不低于20万元”可以表示为不等式≥20

问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?

分析:假设截得500mm的钢管x根,截得600mm的钢管y根..

根据题意,应有如下的不等关系:

(1)解得两种钢管的总长度不能超过4000mm;

(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;

(3)解得两钟钢管的.数量都不能为负。

由以上不等关系,可得不等式组:

[练习]第82页,第1、2题。

[知识拓展]

设问:等式性质中:等式两边加(减)同一个数(或式子),结果仍相等。不等式是否也有类似的性质呢?

从实数的基本性质出发,可以证明下列常用的不等式的基本性质:

证明:

例1讲解(第82页)

[练习]第82页,第3题。

[思考]:利用以上基本性质,证明不等式的下列性质:

[小结]:1.现实世界和日常生活中存在着大量的不等关系;

2.利用不等式的有关基本性质研究不等关系;

[作业]:习题3.1(第83页):(A组)4、5;(B组)2.

不等式解法教案 篇4

教学目标

1、知识与技能

理解一次函数与一元一次不等式的关系,发展学生的认知体系。

2、过程与方法

经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法。

3、情感、态度与价值观

培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值。

重、难点与关键

1、重点:一次函数与一元一次不等式的关系。

2、难点:如何应用一次函数性质解决一元一次不等式的解集问题。

3、关键:从一次函数的图象出发,直观地呈现出一元一次不等式的'解的范围。

教具准备

采用“问题解决”的教学方法。

教学过程

一、回顾交流,知识迁移

问题提出:请思考下面两个问题:

(1)解不等式5x+6>3x+10;

(2)当自变量x为何值时,函数y=2x-4的值大于0?

学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题。

教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”

思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出。当x>2时,这条直线上的点在x轴的上方,即这时y=2x-4>0。

问题探索

教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?

学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题。

师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围。

教学形式师生互动交流,生生互动。

二、范例点击,领悟新知

例2用画函数图象的方法解不等式5x+4<2x+10。

教师活动激发思考

学生活动小组合作讨论,运用两种思维方法解决例2问题

解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2。

解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2。

评析两种解法都把解不等式转化为比较直线上点的位置的高低。

三、随堂练习,巩固深化

课本P216练习。

四、课堂,发展潜能

用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的。

五、布置作业,专题突破

课本P129习题14·3第3,4,7,8,10题。

不等式解法教案 篇5

一、教学目标:

(一)知识与能力目标:(课件第2张)

1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法.

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:

1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)

1.在教学过程()中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式

的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点

1.掌握一元一次不等式的解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破

教材中没有给出解法的`一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学.

五、教学流程:

(一)、复习:

教学环节

导入新课

1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)

2.学生回忆不等式的性质,并说出解不等式的关键在哪里。

3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。

4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。

5.学生练习,并说出解一元一次方程的步骤。

6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)

7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。

8.明确本课目标,进入对新课的学习。

9.复习解一元一程的解法和步骤。

10.让学生回顾性质,以加强对性质的理解、掌握。

11.运用类比思维

12.自然过度,出示课件第3、4张

(二)、新授:

教学环节

教师活动

学生活动

设计意图

探究一元一次等式的解法

1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。

2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。

3.激励学生完成对(2)解答,并找学生上讲台演示。

4.强调在数轴上表示解集时的关键(出示课件第8页)

5.出示练习(出示课件第9页)

6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)

7.指导学生归纳步骤。

8.补充适当的练习,以巩固学生所学。(出示课件第12页)

9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。

10.学生类比解一元一次方程的步骤

与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)

11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。

12.理解、体会在数轴上表示解集的方法和关键。

13.学生组内讨论完成。

14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.

15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)

16.认真完成练习。

17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)

18.巩固对一般解法的理解、掌握。

19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。

20.让学生明白不等式的解集是一个范围,而方程的解是一个值。

21.培养学生的扩展能力。

22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。

23.通过动手、动脑使所学知识得到巩固。

24.巩固所学。

(三)、小结与巩固:

教学环节

教师活动

学生活动

设计意图

小结与巩固

1.引导学生对本课知识进行归纳。

2.学生完成后(出示课件第13、14页)。

3.练习与巩固。

1.学生组内讨论小结,组长帮助组员对知识巩固、提升。

2.学生加强理解。

3.完成练习:书63页第4题,第5(2、4)题。

1.培养学生总结、归纳的能力。

2.点拨学生对知识的理解与掌握。

3.巩固本课所学。

不等式解法教案 篇6

教学目标

1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

教学难点?? 审题,根据实际问题列出不等式.

例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

解:设累计购物x元,根据题意得

(1)当0 < x≤50时,到甲、乙两商场购物花费一样;

(2)当50< x≤100时,到乙商场购物花费少;

(3)当x > 100时,到甲商场的花费为100+0.9(x-100) , 到乙商场的花费为50+0.95(x-50)则

50+0.95(x-50) > 100+0.9(x-100),解之得x >150

50+0.95(x-50) < 100+0.9(x-100),解之得x < 150

50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150

答:当0 < x≤50时,到甲、乙两商场购物花费一样;

当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的.90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

解:设购买午餐x份,每份报价为“1”,根据题意得

0.9x > 100+0.8(x-100),解之得x >

0.9x < 100+0.8(x-100),解之得x <

0.9x = 100+0.8(x-100),解之得x =

答:当x>时,选乙公司较好;当0 < x <时,选甲公司较好;当x=时,两公司实际收费相同。

作业

1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种,

一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;

二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种更合算?

2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

不等式解法教案 篇7

平时我们听课很多都是新授课,课的模式我们也探讨很多了,而此节就课型而言应算作习题课,为何上此课型,主要是提出一种上法,让同仁加以探讨,得出几种模式。本节内容是“基本不等式的应用”,是在学生掌握用基本不等式技巧的基础上进行的,基本不等式的应用主要是两方面:一是求最值,二是它的实际应用。

教学过程设计为四个环节:

一是梳理基本不等式的知识点;

二是练习用基本不等式求函数的最值;

三是基本不等式在实际中的应用;

四是高考中基本不等式的典型题型。

时间安排是这样:

第一环节大概5分钟;

第二环节大概10分钟;

第三环节大概15分钟;

第四环节大概10分钟。

在实际操作时可能第一和第二环节有超时,故最后课堂内容不能在40分钟完成。当然,我的目的只是提出一种习题课的课堂模式,具体时间上我们可以通过对习题的增减来达到吻合。对于第四环节可能同仁有不同看法,认为只是让学生看一下高考题,起不到实质效果,还不如不要这个环节。我的设计意图是让学生了解此内容在近几年高考中出现的形式,并作为资料保存课后自己再练习加以巩固。高中一二年级的老师和学生,应该要有三年一盘棋的思维和行动,每个内容上完后把近几年的经典高考题拿出来进行分析,我觉得不论对学生或老师都相当有益,如果能让学生养成这个习惯,三年时间的积累,让学生或多或少会对高考内容的.重点、难点,命题的形式及命题的规律有自己的研究或者是想法,相信对他们高三的复习和迎考有很大的帮助。

推荐阅读

上一篇:幼儿园家务教案推荐14篇 下一篇:2024二力平衡的教案
back_img
推荐标签