【#实用文# #2024多边形课件系列#】小编在大量的阅读中看到了一篇超级有价值的“多边形课件”,如果你认为这是有价值的欢迎分享给你的朋友和家人。老师在上课前需要有教案课件,只要课前把教案课件写好就可以。教师要注重教案的科学制定和执行提高课堂教学效果。
多边形课件 篇1
六年级上册信息技术《画正多边形》教案范文
教学目标:
1、学会用REPEAT命令画正多边形
2、学会用REPEAT命令画圆
教学重点:
教学目标1、2
教学课时:
2课时
教具学具:
多媒体网络教室、LOGO系统
教学过程:
在上一课中,我们学习了几条基本的`绘图命令,利用这些命令可以画一些简单的图形。为了让小海龟画复印复杂一些的图形,本课再学习几条绘图命令。
1、 REPEAT命令:
对于需要多资重复执行的命令,不必像上面那样反复输入,可用重复命令来完成。重复命令也叫REPEAT命令,命令的格式是:
REPEAT 重复次数[命令组]
如:REPEAT 4[FD 60 RT 90]
即可以重复执行4次FD 60 RT 90,从而画出一个正方形。
小小的提示:REPEAT与重复次数之间必须有一个空格,重复次数与中括号之间可以没有空格。
2、 画正多边形
每条边都相等,每个角也相等的多边形叫正多边形,用重复命令画正多边形非常简单。
1、 实践1:画一个边长为100步的正三角形
学生实践操作,教师巡回指导。
六、七、八、十边形
CS REPEAT 5[FD 60 RT 360/5]
REPEAT 6[FD 60 RT 360/6]
REPEAT 7[FD 60 RT 360/7]
REPEAT 8[FD 60 RT 360/8]
REPEAT 10[FD 60 RT 360/10]
3、 实践3:
用重复命令画圆
CS
REPEAT 360[FD 1 RT 1]
3、 小结本课:
这节课你学会了什么?(学生总结、个别补充、教师汇总小结)
多边形课件 篇2
活动目标:
1、初步了解时钟的表面结构及时针、分针的运转规律,学会看整点时间。
2、发展逻辑思维能力。
3、养成按时作息,珍惜时间的好习惯。
4、初步培养观察、比较和反应能力。
5、引发幼儿学习的兴趣。
活动准备:
1、教具准备:圆形时钟一个,没有指针的纸制大钟面一个,1—12整点电子钟卡片。
2、学具准备:实物钟若干。
3、《操作册》第6册第7—8页。
活动过程:
一、预备活动。
师幼互相问候。
游戏:钟之歌。幼儿和教师一起跟随音乐唱“钟之歌”,边唱歌边做动作。唱完后教师提示:“这是一首谜语歌,请大家猜猜谜底是什么?”
二、集体活动。
创设情境,刚才小朋友们猜的谜底是钟,我们在生活中都离不开时钟。今天老师就给小朋友们带来了一位时钟朋友。
1、教师出示圆形时钟,请幼儿观察钟面,了解钟的表面结构。
2、通过拨钟,认识分针和时针。
教师慢慢拨钟,引导幼儿观察分针和时针的运动。让幼儿说出:分针跑得快,时针跑得慢。
3、通过拨钟,人是整点钟。
教师将分针和时针都拨到12上,然后调节钟背面的调时钮,使分针转一圈后正指向数字12,让幼儿注意时针有了什么样的变化。教师反复拨几次,让幼儿明白分针每走一圈,时针就走一个数字,经过了一个小时。
4、自由拨钟。
幼儿分成若干组,每组一个实物钟面,请幼儿轮流拨钟,观察并讨论分针和时针的变化,引导幼儿发现:只要分针正指“12”,时针就正指某个数字。
教师小结:分针正指12,时针指数字几,就是几点钟。出示写有整点钟的电子钟卡片,与幼儿一起拨整点中。边拨边与幼儿一起说:“1点整、2点整、3点整……”直到两针在12上面重合(即12点整)。
三、分组活动。
教师:时钟想和小朋友分组玩游戏。
第一组:游戏“时间超人”,一名幼儿站在大钟前,背对着大家。另一名幼儿报时“X点整”。听到报时后,大钟前的幼儿就用手臂来摆出分针和时针的位置,游戏可反复进行。
第二组:按要求拨钟。两名幼儿一组,一幼儿任意出示整点的电子钟卡片,另一幼儿用学具播出相应的时间。
第三组:时间时间对对碰。做《操作册》第六册第七页的活动“剪一剪、贴一贴”。
四、游戏活动。
教师:老狼也学会了认识时间,我们去考考它。
游戏:“老狼老狼几点钟”。
教师手拿1—12点钟的电子钟面卡片12张,走到前面扮演老狼。幼儿跟在“老狼”的后面边走边问:“老狼老狼几点钟”?“老狼”举起1点钟的卡片边回答:“1点钟”。幼儿继续问老狼,当老狼回答“天黑了”时,其他幼儿必须快速回到座位上安静下来。最后一个回到座位上的幼儿就被“老狼”吃掉,游戏反复进行。
五、交流小结,收拾学具。
教师针对幼儿的学习情况,引导幼儿将操作材料收拾好。
多边形课件 篇3
一, 说教材分析 从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。 二, 说学生情况 学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。 三, 说教学目标及重点,难点的确定 新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点 【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想 【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。 【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。 【教学重点】多边形内角和及外角和定理 【教学难点】转化的数学思维方法 四, 说教法和学法 本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。 【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。 【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。 【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。 五, 说教学过程设计 整个教学过程分五步完成。 1, 创设情景,引入新课 首先解决四边形内角的问题,通过转化为三角形问题来解决。 2,合作交流,探索新知。 更进一步解决五边形内角和,乃至六边形,七边形直到N边形的内角和,都能用同样的方法解决。学生分组讨论。 3, 归纳总结,建构体系。 多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。 4, 实际应用,提高能力。 "木工师傅可以用边角余料铺地板的原因是什么 "这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫 5, 分组竞赛,升华情感 四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。 六, 说板书设计 板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理 七, 说创意说明 本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。
多边形课件 篇4
教学目标:
1、经历画图、填表、分析数据、探索规律的过程,发现皮克公式。
2、初步感悟通过固定某些变量的值来探求其余变量的变化规律的科学思维方法。
3、获取由简单到复杂的探究问题的方法和经验。
4、能类比迁移探求问题的方法,尝试拓展研究同类新问题。
教学重点:
发现、得出多边形的面积与边上钉子数和多边形中间钉子数之间的规律。
教学难点:
类比推导出一般规律。
教学准备:
作业纸多媒体课件
教学过程:
一、激趣生疑,直观感知。
1、呈现一个钉子板上的多边形说明:每相邻的四个钉子构成一个正方形,边长是1,面积是1个面积单位。
提问:这个图形有几个面积单位?你是怎么知道的?
组织交流:
(1)面积公式计算;
(2)分割数方格。
2、启发:你能再围一个面积和刚才不一样的多边形吗?在围过程中想一想多边形的面积可能跟什么有关呢?
学生动手围一围,同桌相互说一说怎样求出面积的。
3、追问:跟哪里的钉子数有关?
4、揭题:面积与钉子数之间是否存在一定的规律呢?我们这节课就来研究钉子板上的多边形面积与钉子数之间的关系。
提问:想一想,我们可以怎样来研究?
提出猜想
多边形课件 篇5
北师大版义务教育课程标准实验教科书小学数学三年级下册第39—41页的《认识图形的面积》。
(二)教材地位和作用“认识图形的面积”是在学生初步认识长方形和正方形的特征及初步掌握它们周长和计算方法的基础上进行的。学好这部分的知识,不仅有利于发展学生的空间观念,也是学习和探索其他平面图形面积计算方法的重要基础。
1、知识技能目标让学生经历探索物体表面和平面图形大小的实际问题的过程,通过“涂一涂”,“看一看”,“比一比”等活动,感知面积的含义。
2、三年级数学下册说课稿认识图形的面积:过程目标通过探索、交流、比较、评价。使学生经历与他人合作,交流的过程,培养主动探索的精神和与人合作的意义。
3、情感性目标通过自主学习,动手操作,感受数学的价值以及在生活中的运用,获得成功的体验以及用数学的乐趣。
(四)教学重、难点与关键重点:认识图形面积的含义。难点:面积概念的形成过程。关键:结合教材提供的实例,通过教具的演示和学具的操作让学生在观察、比较及操作过程中获得丰富的感性认识,从而初步感知面积的含义。
(五)教具、学具准备教师准备多媒体课件,学生准备学具盒、硬币和剪刀。
(一)教法在教法的运用上,我以新课标的理念为指导,并结合本节课的实际,我采用观察比较法,实践操作法,合作交流法,并恰当运用多媒体进行直观形象的辅助教学。
(二)学法《数学课程标准》提出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践,自主探究与合作交流是学习数学的重要方式,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为已有,并在实践中学会学习。在这节课,采用小组合作的学习方式,组织引导学生动手实践,自主探究,合作交流。通过“涂一涂”“看一看”“比一比”“画一画”等有趣的活动,在学生动脑、动手,动口的过程中,培养学生的创新意识和体现“做数学”的乐趣。
三、教学程序新的《数学课程标准》明确规定:“数学教学”从“以获得知识为首要目标”转变为“以关注人的发展为首要目标”。以“学生发展为本”的思想,我特设计以下的教学程序:
创设情境,游戏激趣师生涂色比赛。通过比赛来导入新课,一方面以来激发学生兴趣,活跃课堂气氛,另一方面让学生建立图形有大小的概念,为学习新知识做好心理准备。
活动体验,认识新知1、感知面积概念主要让学生从分门别类,对照比较中认识平面图形有大有小,为平面图形的面积作铺垫。
(2)摸一摸,比一比(动手操作二)物体的表面有大有小充分利用书本的主题图,学生在解决问题的过程中,主动参与并体验到数学源于生活,用于生活。
课题物体的表面或平面图形的大小就是它们的面积。学生通过观察、比较、获得多种感性认识,在此基础上,抽象出面积概念便是水到渠成了。
每个同学体验到解决问题的策略性。并通过反思性的评价,提炼解决问题的最优方法,提高获取知识和解决问题的能力。
实践应用,巩固反馈1、基础性练习(1)下面方格中哪个图形面积大?(2)说一说哪个图形的面积大,哪个图形的面积小。(3)说一说每种颜色的面积等于几个小方格2、拓展性练习(1)画图活动在下面的方格中画3个不同的图形,使用它们的面积都等于7个方格的面积。(2)展示学生作品,交流发现面积相同的图形可以有不同的形状。帮助学生及时巩固所学知识,培养学生解决问题的能力。在这项活动中,充分调动学生的积极性,鼓励学生大胆想象,给学生创设一个充分发散思维的空间,培养学生初步的创新意识和合作交流的能力。
总结回顾,整理收获通过这节课的学习,我们学会了什么?让学生谈谈自己的收获,体现了一种“反思”的思想,使学生学会总结,深化认识,把所学知识变成自己内在的东西。
本节课的教学,我以新课标的理念为指导,选用正确的观察比较法,实践操作法等教法和最优的动手操作,自主探索,合作交流等学法去组织教学课程。使教法与学法和谐统一,达到最佳组合,极大地优化了课堂教学,让每一个学生真正学到有价值的数学,体验到不同程度的乐趣,构建了一个充满生机与活力的数学课堂。
多边形课件 篇6
“组合图形的面积”是小学数学人教版第九册第五单元的内容。教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算时,要把一个组合图形转化成已学过的平面图形再进行计算,这样既可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念并解决一些实际问题。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性。二是针对组合图形的特点强调学生学习的自主探索性。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难,所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。
基于以上的分析,我确立本节课的教学目标:
1、知识目标:在自主探索过程中,理解计算组合图形面积的多种方法;并能根据组合图形的条件有效地选择合理的计算方法解决问题;能运用所学的知识解决生活中的问题。
2、能力目标:培养运用多种策略解决实际问题的意识,渗透转化的学习思想策略。
3、情感目标、感受数学与生活的密切联系,体会组合图形的面积在实际生活中的应用价值。
针对五年级学生的年龄特点和认知水平,我确定本节课的教学重难点为:认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
教学难点:引导学生观察组合图形,根据图形的特点,运用不同的方法计算出它的面积。在这个过程中,培养学生运用多种策略解决实际问题的意识。
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
设计中放手让学生大胆探索,让学生在拼一拼、分一分、画一画、算一算中体验,在体验中思考,在思考中发展。老师说的很少,基本上都是由学生自己探究出来的,充分发挥了学生的主体作用。
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
为完成本节教学目标,突出重点,突破难点,让学生充分体会到数学就在身边,感受到组合图形的趣味性,我制定了以下教学环节:
首先,让学生欣赏一些日常生活中经常见到的图片,让学生观察比较说一说共同之处,同时说说这些图片的表面都由哪些图形组合而成的。(这里让学生说出物品表面的图形组成,为建立组合图形的概念和计算组合图形的面积打下基础。)
其次,让学生说一说生活中的组合图形。这时我让学生畅所欲言,尽情说说身边的组合图形,感受组合图形就在身边,体会组合图形的美。最后让学生拆开老师给大家的礼物盒,看看里面是什么礼物,就会使学生立刻认识到正方形、长方形、平行四边形、三角形、梯形,让学生举手发言回答,这些图形的面积公式分别是什么,谁说的对,老师就把礼物送给谁,这样做既可以充分调动学生的积极性,为本节课后面环节提供积极活跃的气氛,也可以复习这些图形名称及相应的面积公式,为确保正确的计算组合图的面积打下基础。再让学生以小组为单位利用这些图形,设计拼搭组合图形,当学生创作完成,我让他们在小组内交流,并鼓励学生上台展示,向小伙伴介绍自己拼的图案像什么?是由哪些基本图形组成的?从而明确组合图形是由几个基本图形组合而成的,引出组合图形的概念。
这一环节通过拆礼物,送礼物的游戏,让学生在说一说,拼一拼,看一看的游戏过程中充分调动多种感官参与到学习中来 ,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形有关。
经历了拆礼物游戏之后,学生的学习兴致非常高,这时我在呈现一个这样的生活情境:最近老师家的房子正在装修,正计划粉刷墙面呢,同时多媒体出示墙面的平面图。
(1)首先让学生观察、讨论:这个图形的面积我们是否学过呢?又可以把它分解成哪些基本的平面图形呢?学生通过前面的经验,以及小组讨论交流,学生可能会出现以下两种情况:
A、是把这个组合图形分解成一个三角形和一个正方形来计算。
B、是把这个组合图形分解成两个梯形。(对于这两种情况我都及时予以肯定)
(2)接着再问学生,你们是乐于助人的好孩子吗?那你们能不能开动脑筋帮助老师算一算粉刷这面墙老师需要买多少平方米颜料吗?这样的提问形式,学生当然很愿意去动手、动脑帮老师的忙。然后以比赛的形式让学生自己独立完成:比一比,看谁的方法多,谁能更快更好的帮老师算出来,而我就在下面巡视,并帮助个别有困难的学生。
(3)当学生独立完成后鼓励学生上台展示自己的计算方法,并介绍自己的方法。同时,我在用多媒体清晰、直观地向学生展示分割的过程。让学生更好的理解计算组合图形面积的方法。在让学生自主观察比较并在小组内交流讨论上面几种方法,最后让学生自己总结出求组合图形面积的计算方法:可以把一个组合图形分解成简单基本图形,再把分解出来大的简单图形的面积加起来,掌握“分割法”在解决这一生活问题环节中,我给学生足够的时间和空间,让学生积极主动地参与到学习中,通过自主探索,小组交流,获取更多的解题方法,让他们在小组活动中都有成功的体验和经验的收获。
这一环节,以小组比赛的形式帮助老师解决生活中的问题,激励了学生探索新知的欲望,激发学生学习的积极性。同时学生通过自己动手分割,以及多媒体的直观生动的演示让学生能更好的理解组合图形面积计算方法。
练习是为了学生及时巩固新知,并能用学到的新知进行迁移。为此我设计了以下的下练习:
(1)为了巩固新知,又突出本课的教学难点,我紧接着装修的问题情景,设计了给地面铺地板这一练习,先让学生自主独立的解决,学生会想到用四种方法来解决问题,并观察第四种方法,让他们自己观察比较出不同?从而引导学生感受计算组合图形的面积,有时也可以用一个图形的面积减去另一个图形的面积。渗透添补法。
(2)接着为了巩固这一难点,我又设计了一个判断题,淘气、笑笑、小明、和小丽,他们也正在求一个组合图形的面积,请你看一看,想一想,他们的做法都能求出这个组合图形的面积吗?你最喜欢谁的做法,为什么?让学生通过观察他们这四位同学的转化方法和这个组合图形所给的数据信息,来判断出,有的方法能够求出这个组合图形的面积,但是有的方法会因为没法得到一些关键数据信息而不能求出这个组合图形的面积,从而提醒大家要灵活应用所学的知识解决生活中的各种问题。
(3) 最后,我鼓励学生利用今天所学的知识,解决上课开始时,自己设计的组合图形的面积,由课内延伸到课后,做到了首尾呼应,让学生把掌握的知识拓展到实际生活中去。
好的板书就像一份微型教案,这节板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆理清学习的脉络。
多边形课件 篇7
教学目标:
1、使学生能应用画正多边形解决实际问题;
2、会应用“口诀”画正五边形的近似图;
3、能对较复杂的几何图形进行分解,然后通过画正多边形进行组合.
4、通过解决实际问题培养学生会从实际问题中抽象出数学模型的抽象能力及用数学意识;
5、通过运用正多边形的有关计算和画图解决实际问题培养学生分析问题、解决问题的能力;
6、通过对民间正五边形近似画法依据的探索,培养学生探索问题的能力;
7、通过有关图形的分解与组合培养学生的观察能力、分解组合能力以及画图能力.
教学重点:
应用正多边形的计算与画图解决实际问题
教学难点:
从实际问题中抽象出数学模型,然后正确运用正多边形的有关计算,画图知识解决问题.
教学过程:
一、新课引入:
上节课我们学习了运用量角器等分圆周画正多边形和运用尺规画特殊的正多边形,这节课我们继续研究正多边形的画法在实际问题中的应用等.
二、新课讲解:
在前几课学习了正多边形的有关计算和画法的基础上系统复习本部分内容并会综合运用解决实际问题.本节有关“地基”问题的例题就是通过复习正方形画法进而画正八边形,并对正八边形进行有关计算.通过此例不仅复习了正多边形的画法、计算,而且复习了查三角函数表,解直角三角形的方法,更为重要的是培养了学生从实际问题中抽象出数学模型的能力,从而提高学生分析问题、解决问题的能力.通过正五边形的民间近似画法的教学弘扬民族文化,揭示其科学性,渗透实践出真知的观点.
上节课我们学习了正多边形的画法,哪位同学能叙述用量角器等分圆法画半径3cm的正十边形?(安排中等生回答:先画出半径3cm的圆⊙o,然后用量角器画出36°的中心角,然后依次画36°的中心角,或者用圆规量出36°中心角所对弦长,依次截取即得正十边形)出现误差积累应如何处理?(安排中等生回答:1)适当调节正十边形的边长,2)可能情况下,重新设计画图步骤,减少产生误差的机会)
安排五名学生上黑板分别画半径3cm的圆内接正六边形、内接正三角形、内接正十二边形、内接正方形、内接正八边形,其余学生在下面画,然后师生共同评价所画图形的准确性.
幻灯给出题目,如图7-152,有一个亭子,它的地基是半径为4m的正八边形,(1)用1∶200的比例尺画出地基平面图;(2)求地基的边长a8(精确到0.01m)和面积s8(精确到0.1m2)
哪位同学知道亭子的地基指的是哪个地方?(安排知道的学生回答)哪位同学记得,什么是比例尺?(安排中下生回答,
面图上正八边形的半径应是多少?(安排中下生回答:r=2cm)
请同学们画出这个地基平面图.
大家回忆一下,怎样求正八边形的边长?具体步骤是什么?(安排中等生回答:首先画出基本计算图,然后算出中心角的一半,∠aoc=22°30′.然后选三角函数)请同学们计算这个正八边形的边长.(a8≈3.06(m))
pn·rn),现在要求这个正八边形的面积,边长已求出,周长自然知,还需求边心距,哪位同学告诉我,求r8应选什么三角函数?(安排中下生回答:选∠aoc的余弦)请同学们求出r8来.(r8≈3.70(m))请同学们计算出这个地基的面积.(s8≈45.3(m2))
我国民间相传有五边形的近似画法,画法口诀是:“顶五九,八五两边分”,它的意义如图:(幻灯展示),如果正五边形的边长为10,作它的中垂线af,取af=15.4,在af上取fm=9.5,则am=5.9,过点m作be⊥af,在be上取bm=me=8.连结ab、bc、de、ea即可.
例用民间相传画法口诀,画边长为20mm的正五边形.
分析:要画边长20mm的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例,由于口诀给出的是正五边形的各部分的比例数,所以不妨设口诀正五边形的边cd=10mm.由已知知道要画正五边形的边c′d′=20mm,因此可知要画的正五边形与口诀正五边形的相似比为2∶1,因此只要将口诀正五边形的各部分尺寸×2即得要画的正五边形的各部分尺寸.请同学们算出各部分的尺寸,并按口诀画出正五边形a′b′c′d′e′(安排一中等生上黑板画,其余同学在练习本上画)
虽然这种画法是近似画法,但是这种画法的精确度却是很高的,哪位同学知道在五边形abcde中∠cad的度数是多少?(中上生回答:36°,因正五边形每一内角108°,ab=bc ∴∠bac=36°,同理∠dae=36°∴∠cad=36°)当然△cad为顶角36°的等腰三角形,为什么?(中等生回答:∵△abc≌aed(s.a.s),∴ac=ad.)前面
取2.24作近似值,大家计算ac等于多少?(16.2)ac≈16.2也可说ac
af≈15.4)刚才计算ac≈16.2,那么bm≈8.1,由于ab=10,请大家计算am又应等多少?(am≈5.9)刚才算出af≈15.4,am≈5.9,那么mf显然约为9.5.至此我们已将口诀中的所有数据的.来源探索清楚,从而证明我国民间的这种正五边形的近似画法精确度还是很高的.
幻灯给出下列图案:
请同学们观察这两个图形是怎么画出来的,先看第一图形,哪位同学知道的圆心和半径?(安排中上生回答:中点是圆心,oa长是半径)同理的圆心是的中点,的圆心是的中点,哪位同学发现这三个圆心与a、b、c三点恰好是圆o的什么点?(安排中下生回答:六等分点)
请同学们画出这个图形.
请同学们观察第二个图形,花瓣与⊙o的交点恰是⊙o的什么点?
是半径).
请同学们画出这个几何图案.
三、课堂小结:
本节课我们复习了正多边形的画法和有关计算,并运用这些知识去解决实际问题,学习了民间画正五边形的近似画法并对其科学性进行了探讨,最后学习了分解与组合有关正多边形的几何图案.
四、布置作业
教材p.171中练习1;p.173中12;p.173中14.
多边形课件 篇8
多边形内角和课件
多边形是几何学中一个重要的概念,它是由多条边界起来的平面图形。多边形可以有不同的形状和尺寸,如三角形、四边形、五边形等。当我们研究多边形的性质时,一个重要的概念就是多边形的内角和。
多边形的内角和是指多边形内所有角度的和。在不同的多边形中,内角和的计算方法是不同的。让我们详细地看一下每种多边形内角和的计算方法以及它们之间的关系。
我们来看三角形。三角形是最简单的多边形,由三条边界起来的平面图形。三角形的内角和总是等于180度。这是一个很容易证明的事实。我们可以将三角形划分为两个互补的角度,然后利用角度互补定理,得出三角形的内角和等于180度。
我们考虑四边形。四边形是由四条边界起来的平面图形。四边形的内角和是多边形中最基本的性质之一。我们可以通过把四边形分成两个三角形来计算它的内角和。因为三角形的内角和是180度,所以四边形的内角和等于两个三角形内角和的总和,即360度。
对于五边形来说,它由五条边界起来的平面图形。五边形的内角和是它最基本的性质之一。我们可以通过把五边形划分为三个三角形来计算它的内角和。五边形的内角和等于三个三角形内角和的总和。根据三角形的内角和等于180度的性质,我们可以得出五边形的内角和等于540度。
同样的方法,我们可以推广到更多边的多边形。六边形由六条边界起来的平面图形。六边形的内角和等于四个三角形内角和的总和,即720度。七边形的内角和等于五个三角形内角和的总和,即900度。以此类推,我们可以得出八边形的内角和等于1080度,九边形的内角和等于1260度,以此类推。
通过以上的推理和计算,我们可以得出一个有趣的:多边形的内角和与它的边数有关。具体而言,当多边形的边数增加时,它的内角和也随之增加。我们可以根据这个设计一些有趣的课件活动,帮助学生更好地理解多边形内角和的概念。
课件活动可以包括数学游戏和实践练习,以帮助学生巩固他们的理解并加深他们对多边形的认识。例如,我们可以设计一个多边形内角和的计算游戏,要求学生根据多边形的边数判断它的内角和。还可以设计一些多边形拼图活动,要求学生根据给定的内角和和边数来拼凑正确的多边形。
我们还可以引导学生进行一些实践活动来探索多边形内角和的规律。例如,可以让学生使用纸和直尺自己设计不同边数的多边形,并计算它们的内角和。通过亲身经历和实践操作,学生可以更深入地理解多边形内角和与边数之间的关系。
多边形的内角和是几何学中一个重要而有趣的概念。通过课件活动的设计和实践探索,我们可以帮助学生更好地理解并加深他们对多边形内角和的认识。这不仅可以提高他们的数学能力,还可以培养他们的逻辑思维和问题解决能力。希望本文能给读者提供一些启发和借鉴。
多边形课件 篇9
稍复杂的方程
例1(列方程解形如ax±b=c的问题)
(1) 把解方程和用方程解决问题有机结合,在解决问题的过程中解较复杂的方程。
(2) 结合平时司空见惯的现实素材(足球上两种颜色皮的块数)引出,这种问题用算术方法解决思考起来比较麻烦。
(3) 解方程的过程其实是由解若干基本方程构成的(y-20=4,2x=24),需要强调把2x看成一个整体。
(4) 可以列出不同的方程,如2x-4=20,关键是使学生理解数量关系。
练习十二
素材比较丰富,渗透许多常识教育、国情教育,如动物的奔跑速度、华氏温度与摄氏温度的关系,天安门广场面积、干旱地区的年降水量等。
例2(列方程解形如ax±ab=c的问题)
(1) 根据不同的思路列出不同的数量关系,进而列出不同的方程。
(2) 两个方程之间有内在的联系,从2x+2.8×2=10.4到(2.8+x)×2=10.4实际是运用了初中的“合并同类项”,而从后者到前者实际是“去括号”的过程。
(3) 第一种解法只是在例1的基础上多了一步,可自行解决。
(4) 第二种解法的重点是要把小括号里的看成一个整体,可认为是2y=10.4和2.8+x=5.2的组合。
(5) 教学时,可改变条件,先从2x+2.8×3=13.2引入,再把3千克梨改成2千克梨,再在此基础上列出第二个方程。
例3(列方程解形如ax±bx=c的问题)
(1) 此类问题称为“和差、和倍、差倍问题”,用算术方法解比较难。
(2) 有两个未知数,但是两个未知数之间存在和差关系或倍数关系,因此其中一个未知数可以用另一个未知数的形式来表示。
(3) 重点是设谁是x,一般为了解方程方便,设倍数关系中的单位量为x。当然,也可任意设,只是解答起来比较困难。教学时,可能有学生设海洋面积为x亿平方千米,列出的方程是x+x÷2.4=5.1,只是解方程的方法超出学生的接受范围,教师适当引导即可。
(4) 解方程的过程就是一个乘法分配律进行合并同类项的过程。
(5) 求海洋面积时可以根据不同的数量关系用不同的方法求(地球总面积-陆地面积、陆地面积的2.4倍)。
练习十三
可鼓励学生列出不同的方程,从不同的角度思考。如第6题,如果设第一个自然数是x,则方程为x+(x+1)=97,如果设第二个自然数是x,则方程为(x-1)+x=97。第8题,利用不同的已知信息可列出不同的方程,如利用“我比你大24岁”,则方程为3x-x=24,如利用“妈妈今年的年龄是我的3倍”,则方程为x+24=3x。
四、教学中需注意的问题
1. 关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
2. 用好教材资源,适当扩展联系实际的范围。
3. 重视良好学习习惯的培养。(字母相乘的写法、验算等)
4. 正确看待解方程方法的改变。
一、教学内容
※平行四边形的面积 ※三角形的面积 ※梯形的面积 ※组合图形的面积
到本单元结束,多边形面积的计算就基本学完。组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。
二、 教学目标
1.利用方格纸和割补、拼摆等方法 ,探索并掌握平行四边形、三角形和梯形的面积计算公式。会计算平行四边形、三角形和梯形的面积。
2.认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
三、编排特点
1.加强知识之间的联系,促进知识的迁移和学习能力的提高。
在认识这些图形时是按照四边形和三角形分类编排,学习这些图形的面积计算则以长方形面积计算为基础,以图形内在联系为线索,以未知向已知转化为基本方法开展学习。安排顺序:
2.体现动手操作、合作学习的学习方式,让学生经历自主探索的过程。
各类图形面积公式的推导均采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作学习的方式,探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。同时按照学习的先后顺序,探索的要求逐步提高。
平行四边形面积的计算,是先借助数方格的方法,得到平行四边形的面积;再引导学生将平行四边形转化为一个长方形,推导出平行四边形的面积计算公式。三角形的面积计算就直接要求学生将三角形转化为已学过的图形推导出面积计算公式。到梯形面积的计算,要求学生综合运用学过的方法自己推导出面积计算公式。
每一种图形教材均没有给出推导的过程和计算公式,以便于学生从多种途径探索,自己得出结论,从而给教师和学生都留以较大的创造空间。
3.注意练习的探索性,形式多样化,以促进学生对知识的理解和灵活运用。
练习的编排减少了直接用公式计算的习题,安排了较多的应用问题、变式题、用间接条件求面积及画一画、分一分的操作性习题,并安排的一定数量的思考题。习题的探索性加强,例如过去直接要求量出图形底和高的长度求出面积,现在则要求学生自己想办法求出图形的面积。
另外本单元还安排了两个“你知道吗?”,介绍我国古代数学著作和数学家对平面图形面积的推导和计算方法,丰富学生对我国数学史的认识。
四、具体编排
主题图
设计了一幅街区图。由小精灵提出观察的要求:“你发现了哪些图形?你会计算它们的面积吗?”这样把本单元教学与已有图形的认识联系起来,引入面积计算的教学。学生通过观察主题图去发现图形,巩固和加深了对已学过的图形特征的认识,并可把学习的内容与学生生活实际紧密联系,使学生体会到自己生活的空间就是一个图形的世界。
教学时可以利用主题图作为新旧知识过渡的桥梁,引导学生仔细观察,充分发表意见。有条件的地方可以将主题图做成多媒体课件。
平行四边形的面积
编排意图:
教材分三个步骤安排。
(1)引入。从主题图中学校大门前的两个花坛(一个长方形,一个平行四边形)引入一个实际问题:两个花坛哪一个大?也就是要计算它们的面积各有多大。长方形的面积学生已经会计算,从而提出如何计算平行四边形面积的问题。
(2)用数方格的方法计算面积。这是一种直观的计量面积的方法,在学习长方形和正方形面积计算时学生已经使用过,但是像平行四边形这样两边不成直角的图形该如何数?对学生讲是一个新问题。教材给出提示,不满一格的都按半格计算。教材安排同时数一个长方形和一个平行四边形的面积,再对它们的底(长)、高(宽)和面积进行比较,暗示这两个图形之间的联系,为学生进一步探寻平行四边形面积的计算方法做准备。
(3)探究平行四边形面积计算公式。提出“不数方格能不能计算平行四边形的面积呢?”通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
最后把面积计算公式用字母表示。
教学建议:
(1)结合引入环节进行长方形面积计算和平行四边形概念的复习。
(2)数方格和填表环节要让学生独立完成,然后让学生交流一下是怎样数的和数的结果。有的学生可能用把斜边上的不满一格的两个格拼成一个方格的方法,也应给以肯定。要组织学生对填表的结果进行讨论,学生比较容易发现两个图形的底与长、高与宽和面积分别相等。教师可以进一步提问:根据你的发现你能想到什么?培养学生联想、猜测的能力,同时为下一步的探究提供思路。
(3)探究平行四边形的面积公式是本课的重点。可以用提出假设--动手实验--推导--概括的步骤开展探究活动。
第一步根据上面的讨论提出假设:是否可以把平行四边形变成一个长方形来计算出它的面积?
第二步组织学生动手实验,要求每个学生准备一个平行四边形和一把剪刀。教师注意巡视和进行个别指导。学生一般会出现以下两种割补的方法,都应给以肯定。
第三步小组讨论:观察拼出的长方形和原来的平行四边形你发现了什么?这是本课教学的关键,也是学生学习的难点。有些学生可能不知怎样去思考。可以出示一些问题引导学生思考。积计算公式吗?
第四步进行全班交流,要求学生叙述出自己的推导过程。
在此基础上利用多媒体课件或教具进行演示(如第81页的图),注意在演示过程中显示平移的方法。
练习十五
第2题要求学生自己想办法求出平行四边形的面积,有一定的探索性。学生需要先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。
第3题是逆用公式的题目,已知平行四边形的面积和底,求高。引导学生依据乘除法的互逆关系学会灵活运用公式。
第5题认识等底等高的平行四边形的面积相等。先不要学生计算,引导学生讨论它们的面积相等吗?并说明理由。(两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等)。
第8*题是选作题。要求出小平行四边形的面积,必须知道它的底和高的长度,题中没有给出。但从 、 是大平行四边形上下两边的中点,可以推出小平行四边形的底是大平行四边形底长的一半,它们的高相等,所以小平行四边形的面积是大平行四边形面积的一半,即48÷2=24(cm2)
多边形课件 篇10
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.
(二)计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )