【#实用文# #最新一元二次方程教案十二篇#】编辑为您提供了关于“一元二次方程教案”的最新范文,以下资源仅供参考,请大家仔细查阅。在教学过程中,教案课件是一项基本工作,每位老师都需要编写自己的教案课件。教案的编写是提高课堂教学效率和优化教学方法的必要条件。
一元二次方程教案(篇1)
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。
根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。
通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。
通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。
(二)重点、难点
一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
(三)教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
一元二次方程教案(篇2)
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标 :
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
(2)用根的判别式解决实际问题。
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x =-1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
x2+ x =-
x2+ x+( )2=( )2 ―
2
2
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
1、把例1、例2整理在作业 本上。
2、有余力的.同学把练习题整理在作业 本。
四、教学后记:
一元二次方程教案(篇3)
第1教时
教学内容: 12.1 用公式解一元二次方程(一)
教学目标 :
知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教辅工具:
教学程序设计:
一元二次方程教案(篇4)
教学目标
知识与技能目标
1、构建本章的部分知识框图。
2、复习一元二次方程的概念、解法。
过程与方法
1、通过对本章方程解法的复习,进一步提高学生的运算能力。
2、在解一元二次方程的过程中体会转化等数学思想。
情感、态度与价值观
通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.
教学重点
1、一元二次方程的概念
2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;
教学难点
解法的灵活选择;例4和例5的解法。
教学过程
一、创设情境
导入新课
问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)
二、师生互动
共同探究
1、复习概念
例1
例2
2、四种解法
(1)
解法及其关系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四种解法分别解此方程
(4)方法优选
3、方法补充
例4
4、解法纠错
例5
解关于x的方程
错误解法
正确解法
三、小结反思
提炼思想
我们有哪些收获?解方程的思想方法是什么?
四、布置作业
巩固提高
一元二次方程教案(篇5)
本班有学生53人,数学课还比较喜欢,学习热情也较高,课堂气氛比较活跃。学生在学过一元一次方程的基础上学习,还是对方程有一定的认识。所以老师放手让学生自学、合作的探究方式来学习此课。但有极少部分学生较懒,学习习惯差,不愿思考问题。总体来说学生喜欢动手操作,喜欢小组合作的学习方式。
1. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
2. 感受数学的严谨性以及数学结论的确定性。
2. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式。
1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义。
1.一元二次方程的概念及其一般形式和用一元二次方程有关概念解决问题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
情境创设(大屏幕投影教材24页):要设计一座2米高的人体雕塑,使雕塑的上部(腰上部)与下部(腰下部)的高度比,等于下部与全部(全身)的高度比,雕塑的下部应设计为多高?
X2=2(2-x)整理得X2+2x-4=0,这是什么方程,与以前学过的一元一次方程有什么不同,这节课我们就来学习它---------一元二次方程
1.问题1(多媒体课件)有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?
如果假设切去的正方形边长为x,那么盒底的长是________,宽是_____,根据方盒的底面积为3600cm2,得:_______.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
单循环比赛是指就表示每个队要和其他所有的队都赛到了,如果有4个队总共赛_______场,5个队呢?8个队呢?n个队呢?
同学们用基本线段法和定点发射法总结规律:
场数=(队数-1)+(队数-2)+(队数-3)+。。。。。。+1
列方程得x(x-1)÷2=28 整理得X2-x=56解方程可以得出参赛队数。
请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
(1)为什么a≠0?b和c能等于0吗?(2)特殊式:ax2+bx=0,ax2+c=0
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项、合并同类项等.
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
1.在下列方程中,一元二次方程的个数是( ).
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2- =0
2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ).
A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则( ).
A.p=1 B.p>0 C.p≠0 D.p为任意实数
4.关于x的方程(m2-4)x2+mx-m=0是一元二次方程的条件是()
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_________
3.关于x的方程(m+1)xm-1+mx-1=0是一元一次方程,则m=________
《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
程序 :1.学生自己独立完成2.老师给组长副组长打分3.组长给组员打分4.学生交流疑难杂症5.学生总结易错点和方法6.老师作最后强调。
本节课要掌握:
(1) 一元二次方程的概念;
(2) 一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
(4) 利用一元二次方程解决实际生活问题。
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
∴不论m取何值,该方程都是一元二次方程.
一元二次方程教案(篇6)
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
一元二次方程教案(篇7)
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:
会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:
根据数与数字关系找等量关系。
3.教学疑点:
学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:
列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,
(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
解法(三) 设较小的奇数为,则另一个奇数为。
据题意,得
整理后,得
解得,,或。
当时,。
当时,。
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3.选出三种方法中最简单的一种。
练习
1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。
例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数十位数字个位数字。
三位数百位数字十位数字个位数字。
解:设个位数字为x,则十位数字为,这个两位数是。
据题意,得,
整理,得,
解这个方程,得(不合题意,舍去)
当时,
答:这个两位数是24。
以上分析,解答,教师引导,板书,学生回答,体会,评价。
注意:在求得解之后,要进行实际题意的检验。
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题,设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500)。故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个。
一元二次方程教案(篇8)
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。
一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐。本节课主要侧重于一元二次方程在几何方面的应用。
大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。
数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。
教学目标:
1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。
教学重点、难点及解决措施:
教师引导,学生自主探索、合作交流。
心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:
1、在信息时代,邮政特快专递越来越受到广大用户的青睐。我们同学要给“希望小学”邮寄一些学习用具,为了保证学习用具不受潮损坏,同学们决定自己制作一个包装盒,为此,选用长80厘米,宽60厘米的纸板,在四个角截出四个大小相同的正方形,然后把四边折起,做成一个底面积为1500平方厘米的无盖长方体盒子,并配上相应的盖子,同学们想一想怎样求出盒子的高?
我先让每一个小组展示用硬纸板制作的模型,相互比较形状各异的长方体的纸盒,谈一谈有什么发现,同学们会说:截出正方形的边长不同,盒子的高,底面积也不同,还有正方形的边长就是盒子的高。展示小组再将问题具体解答,不难列出方程并解出方程的解,教师追问展示小组请说出解这道题需要注意意的什么呢?学生会回答方程的一个解并不一定符合题意,需要舍掉,教师强调指出要结合题目的已知条件正确决定一元二次方程两个根的取舍问题。
设置这道题就完成了新课标中的要求能根据具体问题的实际意义,检验结果是否合理的教学目标。
2、用一根长22厘米的铁丝折成一个面积为30平方厘米的长方形,求这个长方形的长和宽。
我还是先让每个小组展示用铁丝折成的不同形状的长方形,比较一下,你有什么发现,同学们会说:
1、铁丝的长度就是矩形的周长;
2、周长相等的矩形可能面积不等;
3、当长与宽的差越大时其面积越小,当长与宽的差越小时其面积越大,从而得出周长一定时正方形的面积最大的结论。
教师对同学们的发现给予充分的肯定,然后由展示小组讲解本题具体解题过程,教师追问请同学们思考能折成面积为32平方厘米的长方形么?给同学们3分钟的时间思考并讨论。
教学预设:学生可能列出方程,从的根的判别式小于零来说明不能折成面积为32平方厘米的长方形。也可能根据刚刚得到的结论周长一定时正方形的面积最大这一特性来解释,正方形的边长为5、5厘米,此时面积最大是30、25平方厘米小于32平方厘米,所以不能完成。若是学生没有想到,教师可适当提示。这道题让学生经历从具体的情景中抽象出一元二次方程模型的过程,总结具体问题中的数量关系和变化规律,即复习了根的判别式知识,又培养了学生的估算能力,还让学生感受到了函数的最值和极限的思想。
3、有一个面积为150平方米的长方形鸡场,一边靠墙,墙的'长度为18米,另外三边用竹篱笆围成,如果竹篱笆的长35米,求鸡场的长和宽各是多少?如果墙的对面有一扇2米的门,竹篱笆的长不变,此时鸡场的长和宽是多少呢?
教师首先提问展示小组解答这道试题与上道试题与什么区别和要注意些什么,展示的小组学生会说鸡场这个长方形的周长不是四边,而是三边之和,而且要注意第二问中周长应是竹篱笆的长加上门的宽度,学生们也不难列出方程。选用这道题是让学生认识到仔细审题,抓住关键词语的重要性,同时也让同学们感受到一元二次方程应用的广泛性。
4、学校为美化校园,准备在长为32米,宽20米的长方形场地上修筑宽度一样的道路,余下的部分作草坪,要求草坪为540平方米,你能帮助学校设计一套方案么?请展示你的设计并计算一下设计方案中,道路的宽是多少米?(要求多种方案)
我觉得将学生置于学校的生活环境中他们会觉得亲切熟悉,参与性更强。同学们可能会提出多种设计方案,例如:图片。教师展示小组如何能得到草坪的面积?他们不难回答出:草坪面积等于场地面积减去道路面积,教师要引导学生发现其规律:无论道路的位置在哪里,我们都可以将分割的四个草坪合成一个整体,道路的面积与道路的位置没有关系,而是与道路的形状有关系。为了研究问题的方便,我们可以把道路移动到场地的边缘,这是对学生渗透划归的思想。教学预设:学生们还可能提出以下的方案,(图案)我们可以让学生讨论他们的合理性。对于不能解决的问题,我们要告诉学生有些方案以我们现在的知识还不能解决,有些方案要同学们附加一些条件按照自己的意图,来解决,还要考虑美观合理性。我们可以课下继续研究讨论。这个试题能使学生产生了积极的情感体验,激发了学生从多角度去思考问题,体会到了解决问题中与他人合作的重要性,通过对解决问题的过程的反思获得了解决的经验,充分发挥了学生的主体地位,有效地培养了学生的创新精神,同学间的互助精神也得到了发扬。
然后是小结环节,由学生来完成,总结出:
1、用一元二次方程解决实际问题均可借助图示法加以分析,关键搞清已知与未知之间的关系。
2、要仔细审题,理解题意中的已知条件,并结合实际,正确决定一元二次方程两个根的取舍问题。
小结归纳,上升到理性,巩固本节课的重点。
最后是布置作业:
2、做一个社会,调查自己编一道实际生活中有关一元二次方程的问题,并给予解决。
布置的作业内容一是本节课内容的练习和拓展,内容二是为学生创设富有挑战性、具有现实意义的问题情境,使学生感受到数学问题来源于生活实际,而生活本身就是一个巨大的数学课堂。同学们通过实践来认证书本的知识,同时又加深对书本知识的理解。
我希望学生们能通过以上这几个环节感受到这是一堂愉快的合作,深刻的理解,活跃的讨论,轻松的记忆的数学课。
一元二次方程教案(篇9)
上面的三个方程这两个方程是一元一次方程吗?它们与一元一次方程的区别在哪里?它们有什么共同特点呢?( 学生分组讨论,然后各组交流 )
(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
【设计意图】通过上述情景分析,让学生小组合作,列出方程。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。
例1:下列方程中哪些是一元二次方程?试说明理由。
例2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项
说明:一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。
此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
(1) 当k取何值时此方程为一元一次方程?
(2) 当k取何值时此方程为一元二次方程?并写出该一元二次方程的二次项系数,一次项系数,常数项。(同学先讨论,同桌交流再进行归纳)
【设计意图】通过例题,使学生巩固一元二次方程的概念,把握概念的实质。
1、课本第32页1、
2、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请尽可能多的写出满足条件的不同的一元二次方程?
【设计意图】开放题可以使学生开阔思维,进一步巩固概念。
引导学生从以下3个方面进行小结,(1)本节课我们学习了哪些知识?(2)学习过程中用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?
【设计意图】主要由学生进行总结和互相补充,以培养学生的归纳概括能力。
一元二次方程教案(篇10)
由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.
通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):
乙 13.5元 13.3元 13.9元 13.4元 13.75元
某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?
老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.
(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?
老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.
解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31
以上这一道题与我们以前所学的'一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.
例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.
(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?
(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.
例2.某人将20xx元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx・80%;第二次存,本金就变为1000+20xxx・80%,其它依此类推.
则:1000+20xxx・80%+(1000+20xxx・8%)x・80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2= =0.125=12.5%
本节课应掌握:
利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.
1.教材P53 复习巩固1 综合运用1.
1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ).
A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250
2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( ).
A.(1+25%)(1+70%)a元 B.70%(1+25%)a元
C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元
3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ).
1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.
2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.
3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在涨价30%后,20xx年降价70%至a元,则这种药品在年涨价前价格是__________.
1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.
3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.
(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率= ×100%)
(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.
二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2
3.
三、1.平均增长率为x,则1600(1+x)2=1936,x=10%
即16x2+56x-15=0,解得x= =25%,y=20(台)
(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。
一元二次方程教案(篇11)
一、复习旧知,类比新知
1、一元一次方程的概念
像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程
2、一般形式:
是常数且
设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。
二、生活情境,自主学习
(1)正方形桌面的面积是2m,设正方形桌面的边长是x m,可得方程
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是x m则花圃的长是m,可得方程
(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程
(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程
设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的`,从而激发学生的求知欲望,顺利地进入新课。
三、探究学习:
1、概念得出
讨论交流:以上所列方程有哪些共同特征?
设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.
2、巩固概念
下列方程中那些是一元二次方程。
设计意图:
这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
3、一元二次方程的一般形式:
设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.
4.典型例题
例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解。
5.巩固练习
把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解
6、拓展应用
(1)、若是关于x的一元二次方程,则()
p为任意实数B、p=0 C、p≠0 D、p=0或1
(2)、若关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是
(3)、若方程是关于x的一元二次方程,则m的值为
设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。
7.课堂小结
设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
一元二次方程教案(篇12)
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型
教学过程
一、复习引入
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
二、探索新
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
例1、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得: (x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x1= =0.8m,x2=-2(舍)
∴上口宽为2.8m,渠底为1.2m
(2) =25天
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道
例2、如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
老师点评:
依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm