back_img
好工具 >范文 >实用文

最新一元一次方程课件(合集九篇)

2023-11-15 15:03:48 一元一次方程课件 一次方程课件

【#实用文# #最新一元一次方程课件(合集九篇)#】以下是好工具范文网编辑为您推荐的“一元一次方程课件”。每位老师都需要认真编写教案课件,因为它是不可或缺的课堂工具。准备好教案课件的前期工作非常重要,只有这样才能确保课堂教学达到预期效果。希望我的建议对您有所帮助,让您能更好地解决问题!

一元一次方程课件【篇1】

1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

2、使学生加强了解列一元一次方程解应用题的方法步骤。

重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。

1、列方程解应用题的一般步骤是什么?

2、路程、速度、时间的关系是什么?

3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。

列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。

例(课本P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:

设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450

(2)再分析快车先开了30分两车相向而行的'情形。

说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

2、相向而行的相遇问题中,要注意时间的关系。

一元一次方程课件【篇2】

3.4实际问题与一元一次方程探究(2)

--销售中的盈亏

2、某服装店为了清仓,某件成本为90元的衣服亏损了10%,则这件衣服卖了_ _元

3、一件衬衣进价为100元,利润率为20% 这件衬衣售价为 ______ 元;

4.一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元;

一、教学目标

能利用一元一次方程解决商品销售中的实际问题。

4.随州某琴行同时卖出两台钢琴,每台售价为960元。

其中一台盈利20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?

二.知识链接

在数学上,商品销售问题也成了一类非常重要的实际问题,在商品销售问题中,首先理解几个概念:

(1)成本价:是商家进货时的价格(有时也称进价);(2)标价:商家在出售时,标注的价格

(称原价、定价);(3)售价:消费者购买时真正花的钱数(有时叫成交价、卖出价);(4)利润:商品出售后,商家所赚的部分,(利润=售价-进价)(5)利润率:在销售过程中,利润占进价的百分比;(6)打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售,卖货时,按照标价乘以十分之几或百分之几十,如:打8折,就是按标价的80℅出售。

(7)掌握几个等量关系式: ①利润=售价-进价;

②售价=利润+进价=进价×(1+利润率);

③利润率=利润售价进价×100% = 进价进价 ×100% 三.引例:

1、商品进价是30元,售价是50元,则利润 是 元.利润率是

5、商品原价200元,九折出售,卖价是 元.6、某商品按定价的八折出售,售价是14.8元,则原

定售价是

.四.探究新知、讲授新课 例:某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%。卖这

两件衣服总的是盈利还是亏损,还是不盈不亏? 设盈利25%的那件衣服的进价是________元,它的商品利润就是_______元,根据售价==利润+进价这一相等关系列出方程____

_ __,解得___

____。设另一件衣服的进价为___ __元,它的商品利

润是_______元,列出方程_______,解得______ _。(亏损就是负盈利,即利润为-0.25y元)

两件衣服的进价是x + y = _______元,而两件

衣服的售价是60 + 60 =_______元,进价_______ 于售价,可知卖这两件衣服总的盈亏情况是____ _ _。

五.综合应用

1、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈

亏情况如何?()

A、盈利8元 B、亏损8元 C、不盈不亏

D、无法比较

2、两件商品进价为84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后()。A.赢利16.8元 B.亏本3元 C.赢利3元 D.不赢不亏

3、一批校服按八折出售,每件为x元,则这批校服每件的原价为()

A.20%元 B.80%元 C.20%χ元 D.80%χ元

5.我们的身边有一些股民,某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖

出1600元,但亏损20%,该股民在这次交易中是盈利还是亏损,盈利或亏损多少元?

6.某商品的进价是1000元,售价为1500元,由于情

况不好,商店决定降价出售,但又要保证利润率为5%,那么商店可降多少元出售此商品;

7.一商店将某种商品按成本价提高40%后标价,元旦期间打8折销售以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?

六.课堂小结,巩固新知

一元一次方程课件【篇3】

教学过程设计:

一.从学生原有的认知结构提出问题:

1.什么叫方程?方程的解?解方程?

(让一名学生在黑板上板演本题,其余学生在练习本上完成,教师巡视,发现问题,及时纠正)

5.(幻灯片)观察方程:44x+64=328;13+x=(45+x);=+1请找出它们具有的特点:(①只内含一个未知数;②未知数的次数都是一次;③含未知数的式子都是整式)

我们将具备上述特点的方程叫做一元一次方程。请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念

教师强调:“元”是指未知数的.个数;“次”是指方程中内含未知数的项的最高次数;未知数的系数不能为0

三、师生共同探索解一元一次方程的方法与步骤:

例4:

分析:解这个方程用到哪些变形?(去括号、移项、合并同类项、化系数为1)(一学生口述,教师板书)

化系数为1,得x=

引导学生观察例4、例5的解题过程总结解一元一次方程的一般步骤⑴去分母⑵去括号⑶移项⑷合并同类项⑸化系数为1

2.已知(m-1)x-(m+1)x-8=0是关于x的一元一次方程,则代数式199(2m+3)(1-m)+10m+1的值为__________

4.列方程求解:当y取何值时,2(3y+4)的值比5(2y-7)的值大3(学生独立完成,并针对存在问题加以矫正

)

一填空题:

23x-52x-325.-mn与nm是同类项,则x=__________6.(m+2)x|m|-1-5=0是一元一次方程,则m的值为_______

9.如果2kx-5=7x-k是关于x的一元一次方程,则k≠________

10.若(a-6)2+|a-b+2|=0,则a-2b=_____________

ax+b-

一元一次方程课件【篇4】

教学内容:

解一元一次方程——去分母

教学指导思想与理论依据:

本章是通过学习字母表示数,初步掌握列代数式表示简单的数量关系,学会解一元一次方程,并注重一元一次方程在实际问题中的应用。一元一次方程是研究数学的基本工具之一,也是提高学会思维能力和分析能力、解决问题能力的重要载体。本节课是学习一元一次方程解法的第四课时,主要内容是学习用去分母的方法解一元一次方程。教学过程从实例出发学习解法,注重化归的思想,培养学生运用数学知识的能力。

教材分析:

本节课知识与前面几个课时密切相连,是学习解一元一次方程方法的最后一节课。在掌握知识方面不仅要求学生学会去分母解方程的方法,更要把前面所学的知识与之融会贯通,能够按照去分母、去括号、移项、合并同类项、系数化为1的顺序,有目的、有步骤的求一元一次方程的解,并达到灵活运用。从而体会并掌握解一元一次方程的化归思想,提高运算能力。

学生情况分析:

尽管学生已经在前面几节课学习了一些解一元一次方程的步骤,但是去分母的原理和容易错的地方仍然是这解课需要解决的重点和难点。通过合作探究让学生体验知识的形成和运用的过程,提高学生学习的主动性,帮助学生的数学学习。

学习目标:

知识与能力:

1、使学生掌握含有分数系数的一元一次方程的解法;

2、对解方程的步骤有整体的了解。

过程与方法:

1、通过去分母解方程,体会数学的“化归”的思想方法;

2、通过归纳一元一次方程解法的一般步骤,体会解方程的程序化思想方法。

情感态度与价值观:

培养学生自觉探索意识,让学生在解题中享受到成功的喜悦。

学习重点:

用去分母的方法解一元一次方程

学习难点:

能正确地运用去分母的方法解方程

学习突破点:

(1)找对分母的最小公倍数

(2)强调方程两边各项都要乘以最小公倍数

(3)去括号时要注意符号和乘法分配率的的正确使用。

学习流程安排:

一、实际问题——探究去分母的方法

列方程解决数学问题,感受方程是刻画量与量之间关系的主要模型之一.同时以学生已有的关于等式性质的数学知识为基础,探索利用“去分母”的方法解一元一次方程。

二、例题分析——规范去分母过程

用“去分母”的方法解一元一次方程,掌握“去分母”的方法解一元一次方程应注意的事项.

三、巩固练习、完善解方程程序

归纳一元一次方程解法的一般步骤.

四、小结提升——体会数学思想

总结本节收获,体会其中蕴涵的化归等数学思想.

学习过程设计:

一、实际问题——探究去分母的方法

前面学习了一元一次方程,现在有这样一个问题看同学们能不能解决。

问题(1):一个数,它的三分之二,它的一半,它的四分之一,加起来共是17,这个数是多少?能不能用方程解决这个问题?

问题(2):你能尝试解这个方程吗?(引导学生自主学习,师生共同总结不同的解法。)

问题(3):不同的解法有什么各自的特点?

①直接用分数系数合并同类项

②利用等式性质去分母

如果学生不能回答出第二种解法,教师可以引导学生回顾等式性质来帮助解决。

教师引导学生分析并对比两种解法,得到共识:当方程中含有分数系数时,先去分母可以使未知数的系数变为整数,从而解题更加方便、快捷.

教师引出本节课题:解一元一次方程—去分母

本次活动中,教师应重点关注:

(1)学生能否体会到“去分母”的必要性;

(2)学生是否明确“去分母”的可行性;

二、例题分析——规范去分母过程

1、学生初步尝试,感受去分母的必要性。

x52x1 32

2、学生分小组进行讨论,派代表发言。

例1:解方程

例2:解方程3x13x22x32 2105

提问(1)第一步要做什么为什么要这样做

(2)怎样去分母,这有什么根据

(3)去分母后会出现怎样的需要注意的问题

(4)下面还有怎样的步骤(学生独立完成)

3、师生共同总结:

1为了去掉方程中的分母,第一步应该找到这三个分母的最小公倍数。最小公倍数是10;

2方程的每一项都乘以10,这是根据等式的基本性质:等式的两边同时乘以或除以一个不为零的数,等式仍成立;

3去掉分母后的分子如果是单项式的话应加括号;

4接下来还有去括号,移项,合并同类型和系数化1

小结:通过老师的示例和学生与老师共同的`边做边答,不仅能让学生对去分母的方法有更深的印象;而且对解题过程中可能出现的问题也有了深刻的印象;并且理顺了学生解一元

一次方程的步骤。

三、巩固练习、完善解题程序,归纳一般步骤。

(1)梯度练习

1、选择题一元一次方程3x52x112_去括号后得到()26

a3x+5+1=2- 2x+1b2(3x+5 ) +1 =2- (2x+1 )

c2(3x+5 ) +6 =12- 2x+1d2(3x+5 ) +6 =12- (2x+1 )

2、解下列一元一次方程

a3x52x1 23

x2x1x 24

x1x3的值与7-的值相等?35b1+c当x等于什么数时,x-

(2)同学之间交流,找出问题,进行纠正。

(3)提问:

①通过解以上的方程,你能总结出解一元一次方程的步骤吗你知道每种变形的依据吗

2通过解以上的方程,你觉得那些环节是值得同学们需要注意的?

小结:在学生总结出解方程的一般步骤后,说明不同的方程有不同的解法,不能生搬硬套这个步骤。让学生感受学生解题要根据题目特点,选择适合的解题步骤。

四、小结提升,总结收获。

现在我们回想一下本节课都学到了哪些内容?

教师指板书共同复述:去分母的方法:

依据:

解方程过程中需注意:

解方程一般步骤:(教师提醒:需要哪些步骤取决于方程)最终化成的形式:

五、作业自助餐:

102页:

(1)(2)较容易

(3)(4)稍有难度

教学反思:

通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材辅导。

板书设计

解一元一次方程———去分母

去分母------------方程两边各项都乘分母最小公倍数

去括号------------乘法分配率括号法则

移项------------要变号

合并同类项

系数化1

一元一次方程课件【篇5】

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、 重点:弄清应用题题意列出方程。

2、 难点:弄清应用题题意列出方程。

教学过程

一、复习

1、 什么叫一元一次方程?

2、 解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

分析:设应从A盘内拿出盐x,可列表帮助分析。

等量关系;A盘现有盐=B盘现有盐

完成后,可让学生反思,检验所求出的`解是否合理。

(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

引导学生弄清题意,疏理已知量和未知量:

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=400

如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

6x+8(65-x)=400

也可以按照教科书上的列表法分析

三、巩固练习

教科书第12页练习1、2、3

第l题:可引导学生画线图分析

等量关系是:AC十CB=400

若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

由等量关系就可列出方程:

6(65-x)+8x=400

四、小结

本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

一元一次方程课件【篇6】

一、内容与内容分析

内容

一元一次方程—数学活动(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第三章第四节第五课时)。

内容解析

通过前一阶段“再探实际问题与一元一次方程”的学习,学生基本掌握了销售中的盈亏、用哪种灯节省以及球赛积分表问题。在现实生活中还会有由于各方面的原因,需要选择解决问题的最佳方案,例如顾客在购买某种商品时有几种打折的方法,顾客如何选择最佳的优惠方法;在各种工程的招标中,如何选择最佳的投标方案,用较少的投资取得最佳的效益等等,这些问题有的可以应用一元一次方程的知识加以解决。因此,本课既是对前一阶段学习的巩固,又是新的应用和引伸,同时本课作为“数学活动”,这就为数学拓展了空间,可引导学生到生活中实际了解有关数学问题,尝试应用数学知识解决问题,从而使学生在学习中兴趣盎然,获得真知,培养求异思维和创新的精神。

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,便会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在知识潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。

教学重点

经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.

二、目标和目标解析

1.目标

(1)运用一元一次方程解决现实生活中的`问题,进一步体会“建模”思想方法.

(2)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断.

(3)运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.

(4)通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.

2.目标解析

(1)通过活动一,让学生以新闻播报的形式引出本节课的活动1,创设问题情境,调动学习兴趣,学生进一步体会一元一次方程和实际问题的关系;

(2)通过活动二,通过查阅资料,小组交流讨论,探究了解未知的领域与知识!运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法,激发学生学习数学兴趣,增强自信心;

(3)通过活动三,把事先借的报刊、图书拿出来,再收集一些数据,分析其中的等量关系,编成问题,看看能不能用一元一次方程解决这些问题,使学生运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力;

(4)通过活动四,了解了杠杆平衡规律,并运用规律求杠杆平衡时的支点位置;另一方面体会了数学实验对学习的帮助与启发,进一步认识到方程在实际中的广泛应用,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

三、教学问题诊断分析

在本节课的教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、合作交流、主动发现,这对学生的分析问题,解决问题,表达能力等各方面能力要求较高。本节课两个活动学生生活中的经验不多,大多属于陌生领域与知识,需要学生在实验交流过程中动脑、动口、动手,需要边学习,边应用,有一定难度。由于生活中的数据较大,在计算上也会给学生带来困难。

教学难点

明确问题中的已知量与未知量间的关系,寻找等量关系.

四.教学支持条件分析

ppt、白板交互、微课、实物投影

五、教学过程设计

1.数学活动1 创设情境,导入新课

播报员播报新闻报道:统计资料表明,山水市去年居民的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.

你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的数据,试用一元一次方程求:

(1)山水市前年居民的人均收入为多少元?

(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?(精确到0.1元)

(学生先独立思考、再小组讨论,几分钟后展示成果。本题学生对提议的理解有一定的困难,先理解本题不懂的数据含义)

师引导:说说“增长8%”和“扣除价格因素,实际增长6.5%”的意思;

生回答:通过查阅资料或其他方式解释.

师指明:你能利用这些数据之间的关系从中再计算出一些新的数据吗?

生回答:(1)增长率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)

(2)去年价格上涨率=8%-6.5%=1.5%

生独立做,后展示结果.

(1)解:设山水第前年居民人均收入为x元

列方程(1+8%)x=11664

解得x=10800

答:山水市前年居民的人均收入为10800元.

(2)解:设前年的售价为x元

(1+1.5%)x=1000

解得x≈985.2元

答:在山水市,去年售价为1000元的商品在前年的售价为985.2元.

师生共同解决问题.

练习:数据表明:从19xx年至20xx年,虽然国有企业的户数减少了,但国有及国有控股工业企业完成的工业增加值在不断增长,到20xx年底已经升到14652亿元,比上一年增长11.67%,比全国各行业的增加值年均增长高出2.37个百分点。

你能算出20xx年国有控股工业企业的工业总产值吗?还能算出全国其它行业的工业产值的增长百分比吗?经调查,20xx年全国其它行业的工业产值是18895亿元,你能计算出20xx年的总产值吗?

【设计意图】把生活中的新闻报道的内容为问题,一方面锻炼学生运用方程解决问题的能力,另一方面引导学生关注新闻中隐含的数学问题,进一步体会数学在生活中的应用.这种形式也激发了学生自主学习,深入探究的热情,也有利于提高分析问题和解决问题的能力。

活动二.动手实践、探索新知

播报员播报新闻报道:阿基米德曾说过:“假如给我一个支点,我就能撬动整个地球!”进而介绍阿基米德的杠杆原理.

用一根质地均匀的木杆和一些等重的小物体,做下列实验:

(1) 在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;

(2) 在木杆两端各悬挂一重物,看看左右是否保持平衡;

(3) 在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

(4) 在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

(5) 在木杆左边继续加挂重物,并重复以上操作和记录.

想想可以怎样替代实验?根据记录你能发现什么规律?

师引导:没有木杆,重物等实验用具,我们可以设计替代实验。

生:小组交流设计,几分钟展示:1.支点不动,重物移动. 2.支点移动,重物不动

师介绍:展示两种试验方法,及数据.

师问:根据记录你能发现什么规律?

生:思考回答。

师问:1.(支点不动,重物移动)如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x的一元一次方程. x

l

2.(支点移动,重物不动)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?设直尺长为L,用一元一次方程求解。

【设计意图】

活动2是动手实验与动脑分析相结合,通过简单实验发现杠杆的平衡条件,并根据这个条件,列一元一次方程,解决问题。问题中有字母n,l作为已知数,进行推导计算,为物理学科的公式推导积累经验.

说明:本节课的教学是以创设情景——活动探究——展示交流——反思评价的方式展开。突出一个“活”字,重在一个“动”字,落实一个“用”字。通过活动,让学生感受数学存在于生活又服务于生活。

布置作业。

请收集一些重要问题(例如气候、节能、经济等)的有关数据,经过分析后编出可以利用一元一次方程解决的问题,并正确的表述问题及其解决过程.

六、目标检测设计

小明和小红到公园玩跷跷板游戏,可是他们俩坐在跷板上怎么也平衡不了。现在知道小明的体重是30千克,小红的体重是27千克,跷板长3.8米。你能帮他俩解决这个问题吗?

【设计意图】

对本节重点内容进行现场检测,及时了解教学目标的达成情况。

一元一次方程课件【篇7】

1.掌握解一元一次方程的一般步骤。

2.会根据一元一次方程的特点灵活处理解方程的步骤,化为ax=b(a≠0)的形式。

难点:正确运用去分母、去括号、移项等方法,灵活解一元一次方程.

思考:解一元一次方程时,去括号要注意什么?移项要注意什么?

2求下列各数的.最少公倍数:(1)12,24,36(2)18,16,24

1动脑筋:

一件工作,甲单独做需要15天完成,乙单独做需要12天完成,现在甲先单独做1天,接着乙又单独做4天,剩下的工作由甲、乙两人合做,问合做多少天可以完成全部工作任务?

通过这个问题,请你归纳解一元一次方程有哪些步骤?

先去____,后去_____,再_____、_______得到标准形式ax=b(a≠0),最后两边同除以______的系数。

考考你:

下面各题中的去分母对吗?如不对,请改正。

(1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6

解方程:

例3学校准备组织教师和优秀学生去大洪山春游,其中教师22名现有甲乙两家旅行社,两家定价相同,但优惠方式不同,甲旅行社表示教师免费,学生按八折收费,乙旅行社表示教师和学生一律按七五折收费,学校领导经过核算后认为甲乙两家旅行社收费一样,请你算出有多少名学生参加春游。

解一元一次方程的一般步骤是什么?要注意什么?

一元一次方程课件【篇8】

学情分析:

学生在小学已经接触过一些较简单的数列问题,但当时的数列只在非负数范围内讨论,现在扩展到了整个有理数,就出现了符号的问题。其实,在本节课中的数列较简单,最关键的是学生能找到数列变化的规律并处理好符号问题。

教学目标:

1、 知识目标:学会探索数列中的规律,建立等量关系。

2、过程和方法目标:经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力。

教学重点:

找到数列中的规律,用代数式表示数,并能正确地列出方程。

教学难点:

找数列中的规律,并列出方程。

教学突破点:

对于学生来说,解数列问题的关键在于:如何发现数列的规律,如何用代数式表示数,怎样根据题目的条件找到相等的关系。因此,教师要引导学生学会发现数列中的规律,并找到题目中的等量关系,列出方程。

教学过程设计:

教学环节

教师活动

学生活动

设计意图

创设情境提出问题

问题1、有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

学生讨论,探索,并发现这个数列的形成规律。

本例是有关数列的数学问题,题目要求出三个未知数,与前几节不同的是,问题中没有明确未知数之间的联系,需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生探索的规律

分析问题

引导学生探索这个数列的规律:

1、这个数列中,后一个数与前一个数有怎样的关系?

2、若设第一个数为x,那么,后两个数分别为什么?

3、方程应该列为什么?

4、解方程,得到这三个数应该是什么?

5、这道题,你还有其他的做法吗?

学生经探索后得到:

1、后一个数是前一个数的-3倍。

2、后两个数分别为:

-3x和-3×(-3x)=9x

3、方程列为:

X+(-3x)+9x=-1701

4、解方程,

得这三个数依次为:-243,729,-2187

5、方法二:设第二个数为x,则第一个数和第三个数分别为 。方程列为: 。

方法三:设第三个数为x.,则第一个数和第二个数分别为: 。方程列为:

通过讨论让学生认识到:用一元一次方程解含多个未知数的问题时,通常先设其中一个为x,再根据其他未知数与x的关系,用含x的式表示这些未知数。

通过对该题进行一题多设多列,让学生感受到方程的变化和解题的灵活性,有利于学生有条理的思考问题。

对于列出多种形式的方程的学生给与鼓励与表扬,增加学生学习数学的信心,让学生体会到成功的喜悦。

综合应用

巩固提高

问题2、图中的数阵是由77个偶数构成。

(1) 图中框内的4个数有什么关系?

(2) 在数阵中任意做一个类似于(1)中的框,设其中的一个数为x,那么其他三个数怎样表示?

(3) 小颖说四个数之和是436,你能求出这四个数吗?

(4) 小明说四个数之和是326,你能求出这四个数吗?

(5) 从(3)(4)中,你能发现什么规律吗?

(教师巡堂,指导学生)

学生思考,讨论,分析问题

1、从图中可以看出:22比20大2,36比20大16,38比20大18。

2、不同的设法又不同的表示方法:

例如:若设最小的数为x,则第二大,第三大和最大的数分别是:x+2,x+16,x+18。

3、可列出方程:

X+x+2+x+16+x+18=436

解方程,得:x=100

因此这四个数从小到大分别是:

100,102,116,118.

4、可列出方程:

X+x+2+x+16+x+18=326

解方程,得:x=72.5

由于72.5不是整数,因此这样的四个数不存在。

选择一道通过识图来解决问题的题目,目的是为了拓宽学生的视野,向学生展现多姿多彩的数学。

先观察现有数列的特点,以此类推,推广到整道题目都存在这样的特点。

(3)(4)两道题的设计还可以向学生揭示这四个数的和具备一定的特点,符合这个特点的',这四个数就存在。否则就不存在。培养学生的探索观察能力。

课堂小结

提问:

1、你是怎样分析数列中的规律的?

2、你学会判明方程的解是否合理吗?

3、试用自己的话概括“用一元一次方程分析和解决实际问题”的一般过程。

学生反思:

1、本节课我学得最好的内容是: ;

2、 知识我还没有完全掌握;

3、我将用 的方法来巩固我本节课所学的知识。。

使学生通过自身的反思,对“应用一元一次方

一元一次方程应用教案程解决实际问题”有较全面、理性的认识,进一步体会模型化的思想。

作业

针对的测试练习

分层练习,兼顾个层次的学生。

(三)针对的测试练习

A组:

1、三个连续偶数的和是30,求这三个偶数。

2、有一列数,按一定的规律排列成:-1,2,-4,8,-16,…,其中某三个相邻数的和是1650,这三个数各是多少?

3、小明撕下2月份三章日历,每两张的日期之和分别为27,28,29,你能说出这三张日历的日期是多少吗?

B组:

1、在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39.培训时间是连续的三天,你知道这几天分别是当月的哪几号吗?若培训时间是连续三周的周六,那这几天又分是当月的哪几号?

C组:

1、小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗

一元一次方程课件【篇9】

理解移项法,并知道移项法的依据,会用移项法则解方程.

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

1.运用方程解决实际问题的步骤是什么?

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.

2.共分出3x本和剩余的20本,可知道什么?

根据第二种分法,分析已知量与未知量之间的关系.

4.需要分出4x本和还缺少25本那么这批书共有多少本?

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

本题还可以画示意图,帮助我们分析:

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

根据两种分法,这批书的总数是相等的.

所以,列方程3x+20=4x-25.

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?

要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即

将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

下面的框图表示了解这个方程的具体过程.

由此可知这个班共有45个学生.

答:移项使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为x=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法1:从原问题的解答中,已求的这个班有45个学生,只要把x=45代入3x+20(或4x-25)就可以求得这批书的总数为:

解法2:如果不先求学生数,直接设这批书共有x本,又如何布列方程?这时该用哪个相等关系列方程呢?

这批书共有x本,余下20本,共分出(x-20)本,每人分3本,可以分给 人,即这个班共有 人.

这批书有x本,每人分4本,还缺少25本,共需要(x+25)本,可以分给 人,即这个班共有 人.

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

即 - = +

移项,得 - = +

合并,得 =

系数化为1,得x=155.

1.课本第91页练习.

2.补充练习.

下列移项对不对?如果不对,错在哪里?应当怎样改正?

(1)从3x+6=0得3x=6;

(2)从2x=x-1得到2x-x=1;

(3)从2+x-3=2x+1得到2-3-1=2x-x.

解:(1)错,移项忘了要变号,应改为3x=-6.

(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2x-x-=-1.

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.

一、填空题.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

3.解方程x+21=36得x=________;由10x-3=9得x=______.

三、解方程.

7.(1)8=7-2y; (2) = - ;

(3)5x-2=7x+8; (4)1- x=3x+ ;

(5)2x- =- +2; (6)- x+6=4x+1;

(7) -x=0.5x-3.

四、解答题.

8.设m=3x-2,n=-2x+3,当x为何值时m=n?

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

答案:

一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2

二、4. 5. 6.

三、7.(1)y=- (2)x= (3)x=-5 (4)x=-

四、8.x=1 9.207,5,设从甲粮仓运出x吨,1000-x=798-(212-x)

推荐阅读

小编精心推荐

二元一次方程课件 | 二元一次方程组课件 | 一元二次方程课件 | 二元一次方程组教案
上一篇:幼儿园培训总结怎么写(汇总14篇) 下一篇:毕业调查报告(汇编7篇)
back_img
推荐标签