back_img
好工具 >范文 >实用文

指数函数教案13篇

2023-12-24 14:58:31 指数函数教案

【#实用文# #指数函数教案13篇#】教案课件是每位教师在工作中备课时必需准备的材料,每天老师都有责任认真撰写每份教案课件。教案课件需要确定教学内容,同时也要关注整理教学中的难点。或许很多人对“指数函数教案”感到困惑,但请不要担心,好工具范文网小编会逐一解答您的疑惑,请务必珍藏本文!

指数函数教案 篇1

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

2.教学目标、重点和难点

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透分类讨论、数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学学科的`应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

二、教法设计

1.创设问题情景.

2.强化“指数函数”概念.

3.突出图象的作用.

4.注意数学与生活和实践的联系.

三、学法指导

1.再现原有认知结构.

2.领会常见数学思想方法.

3.在互相交流和自主探究中获得发展.

4.注意学习过程的循序渐进.

四、程序设计

1.创设情景、导入新课

2.启发诱导、探求新知

3.巩固新知、反馈回授

4.归纳小结、深化目标

5.板书设计

五、教学评价

通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

指数函数教案 篇2

一、说教材

1.《指数函数》在教材中的地位、作用和特点

今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点

通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

(1)教学目标

知识目标:①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系②掌握指数函数的概念③掌握指数函数的图象和性质

能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

情感目标:①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力

(2)教学重点和难点

教学重点:指数函数的图象和性质。

教学难点:指数函数的图象性质与底数a的关系。

(3)教学关键:

从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法与学法指导

1.学法指导

由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:

(1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。

(2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。

(3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

(4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

2.教法选择

(1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法

(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图)

三、教学设计

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

1.创设情景、导入新课

教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,......,一个这样的细胞分裂 x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。③引导学生把对应关系概括到形式。

学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;

设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.启发诱导、探求新知

(1)指数函数概念的引出

教师活动:①引导学生观察这两个函数,寻找他们的特征②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。

学生活动:①学生独立思考并回忆指数的概念;②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;③理清指数函数与幂函数在概念上的区别。

设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。

(2)研究指数函数的图象

教师活动:①给出两个简单的指数函数 和 ,并要求学生画它们的图象②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象③利用函数作图器和几何画板作图。

学生活动:①思考画函数图象的方法有哪些?②画出这两个简单的指数函数图象③让学生利用计算器或计算机来画。

设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。

四、板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,

说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。

指数函数教案 篇3

尊敬的评委老师:

大家好,我是今天的5号考生,今天我说课的题目是《指数函数》。

总结语

为了更好的呈现我的教学思路,我将以教什么、怎么教以及为什么这么教为思路,具体从教材分析、教学目标分析、学情分析、教法、学法以及教学过程等几个方面展开我的说课。

教材分析

教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。

学情分析

新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。

教学目标

教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下:

知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。

过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。

情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。

而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。

教学教法

正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。

教学过程

以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。

首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。

其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。

接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。

板书设计

当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。

指数函数教案 篇4

一、说教材:

1.在教材中的地位和作用

本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。

二、说学情:

2.学情分析

心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。

此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

三、说教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。

过程与方法: 让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。

情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。

四、说教学方法:

教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。

在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

(1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;

(2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。

(3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。

五、说教学过程:

1、导入新课(2分钟)

创设情境 ,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?

财主应付给打工者的工钱为1073741824分≈1073万元

(为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)

2、探索新知(7分钟)

问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?

问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?

归纳:函数 中,指数x为自变量,底2为常数.

概念:一般地,形如 的函数叫做指数函数,其中底 ( )为常量.指数函数的定义域为 ,值域为

(设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 )

3、分组讨论(8分钟)

4、例题讲解(12分钟)

5、强化练习(8分钟)

6、课堂总结(2分钟)

7、布置作业(1分钟)

指数函数教案 篇5

我本节课说课的内容是高中数学必修一第三章第一节第二课时——指数函数的定义、图像及性质。我将尝试运用新课标的理念指导本节课的教学,新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础,从教材分析,教学目标分析,教法学法分析和教学过程分析这四个方面加以说明。

一、教材分析

1、教材的地位和作用:

函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。

2、教学的重点和难点:

根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下教学目标:

1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。

3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

三、教法学法分析

1、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。

2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。

3、学法分析

让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。

四、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

学生回答:与之间的关系式,可以表示为。

问题2:折纸问题:让学生动手折纸

学生回答:①对折的次数与所得的层数之间的关系,得出结论

②对折的次数与折后面积之间的关系(记折前纸张面积为1),得出结论

问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。

学生回答:写出取次后,木棰的剩留量与与的函数关系式。

设计意图:

(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数①②

(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接

受指数函数的形式。

(二)导入新课

引导学生观察,三个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数分别以的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

(三)新课讲授

1.指数函数的定义

一般地,函数叫做指数函数,其中是自变量,函数的定义域是R。

的含义:

设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:

问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况?

设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

(1)若会有什么问题?(如,则在实数范围内相应的函数值不存在)

(2)若会有什么问题?(对于,都无意义)

(3)若又会怎么样?(无论取何值,它总是1,对它没有研究的必要.)

师:为了避免上述各种情况的发生,所以规定。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

2:若函数是指数函数,则

3:已知是指数函数,且,求函数的解析式。

设计意图:加深学生对指数函数定义和呈现形式的理解。

2.指数函数的图像及性质

在同一平面直角坐标系内画出下列指数函数的图象

画函数图象的步骤:列表、描点、连线

思考如何列表取值?

教师与学生共同作出图像。

设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数的图象特征,进一步得出图象性质:

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

师生共同总结指数函数的性质,教师边总结边板书。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。

(四)巩固与练习

例1:比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。

(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

(5)题底不同,指数相同,可以利用函数的图像比较大小。

(6)题底不同,指数也不同,可以借助中介值比较大小。

例2:已知下列不等式,比较的大小:

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结

通过本节课的学习,你学到了哪些知识?

你又掌握了哪些数学思想方法?

你能将指数函数的学习与实际生活联系起来吗?

设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。

(六)布置作业

1、练习B组第2题;习题3-1A组第3题

2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

3、观察指数函数的图象,比较的大小。

设计意图:课后思考的安排,激发学生的学习兴趣,主要为学有余力的学生准备的。并为下一节课讲授指数函数图像随底数a变化规律作铺垫。

板书设计:

指数函数及其性质

一.定义剖析:二.图像及其性质三.例题

(1)的常数1.图像例1

(2)系数是12.性质例2

(3)指数位置只能是自变量

指数函数教案 篇6

一。 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的'常见函数-------指数函数。

1.6.指数函数(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

由学生回答:与之间的关系式,可以表示为。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

由学生回答:。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数。

一。 指数函数的概念(板书)

1、定义:形如的函数称为指数函数。(板书)

教师在给出定义之后再对定义作几点说明。

2、几点说明 (板书)

(1) 关于对的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在。

若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定且。

(2)关于指数函数的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是指数函数的判断(板书)

刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。

(1), (2), (3)

(4), (5)。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象。

最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3、归纳性质

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数

1、定义域 :

2、值域:

3、奇偶性 :既不是奇函数也不是偶函数

4、截距:在轴上没有,在轴上为1.

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于轴上方,且与轴不相交。)

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线。

二。图象与性质(板书)

1、图象的画法:性质指导下的列表描点法。

2、草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3、性质。

(1)无论为何值,指数函数都有定义域为,值域为,都过点。

(2)时,在定义域内为增函数,时,为减函数。

(3)时,, 时,。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三。简单应用 (板书)

1、利用指数函数单调性比大小。 (板书)

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1. 比较下列各组数的大小

(1)与; (2)与;

(3)与1 。(板书)

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解:在上是增函数,且

教师最后再强调过程必须写清三句话:

(1) 构造函数并指明函数的单调区间及相应的单调性。

(2) 自变量的大小比较。

(3) 函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2.比较下列各组数的大小

(1)与; (2)与 ;

(3)与。(板书)

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)

最后由学生说出>1,。

解决后由教师小结比较大小的方法

(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

(2) 搭桥比较法: 用特殊的数1或0.

指数函数教案 篇7

(1)定义域、值域

指数函数

应用到值 x 上的这个函数写为 exp(x)。还可以等价的写为 ex,这里的 e 是数学常数,就是自然对数的底数,近似等于 2.718281828,还叫做欧拉数。

一般形式为y=a^x(a>0且≠1) (x∈R);

定义域:x∈R,指代一切实数(-∞,+∞),就是R;

值域:对于一切指数函数y=a^x来讲。他的a满足a>0且a≠1,即说明y>0。所以值域为(0,+∞)。a=1时也可以,此时值域恒为1。

对数函数

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

(2)单调性

对于任意x1,x2∈D

若x1

若x1f(x2),称f(x)在D上是减函数

(3)奇偶性

对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数

若f(-x)=-f(x),称f(x)是奇函数

(4)周期性

对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂

正分数指数幂的意义是

负分数指数幂的意义是

(2)对数的性质和运算法则

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指数函数 对数函数

(1)y=ax(a>0,a≠1)叫指数函数

(2)x∈R,y>0

图象经过(0,1)

a>1时,x>0,y>1;x

0

a> 1时,y=ax是增函数

0

(2)x>0,y∈R

图象经过(1,0)

a>1时,x>1,y>0;0

0

a>1时,y=logax是增函数

0

指数方程和对数方程

基本型

logaf(x)=b f(x)=ab(a>0,a≠1)

同底型

logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)

换元型 f(ax)=0或f (logax)=0

指数函数教案 篇8

指数函数说课稿

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析

1、教材的地位和作用

函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点

根据这一节课的内容特点以及学生的实际情况,学生对抽象的指数函数及其图象缺乏感性认识。为此,在教学过程中让学生自己去感受指数函数的生成过程以及图象和性质是这一堂课的突破口。因此,指数函数的图像、性质及其运用作为教学重点,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

3、课前思考与准备

包括学生在学习新课前的知识储备,和能力储备,这不意味着我们形式化的给予学生一个预习任务,所以我将通过课前思考题让问题引领学生自觉地投入对新知识的探究之中。我设计了几个简单问题

指数函数教案 篇9

一、教材分析

1. 《指数函数》在教材中的地位和作用

《指数函数》是苏教版中专数学国家审定教材第一册第三章《几个基本初等函数》第三节的内容,是在学习了《幂函数》一节内容之后编排的。通过本节课的学习,既可以对指数的概念和幂函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数打下坚实的基础,对中专阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的基础,所以《指数函数》不仅是本章的重点内容,也是中专学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生活、生产和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了图象在研究函数性质时的重要作用。

2.课时安排:两课时

二、学情及目标

通过初中学段的学习和中专对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识方面:学生对正比例函数、反比例函数、一次函数,二次函数等函数概念和性质已有了初步认识,从幂函数的学习中了解了学习函数的基本步骤。

技能方面:学生对采用“描点法”作函数图象的方法已大致掌握,能够为研究《指数函数》做好准备。

素质方面:由观察到抽象的数学活动过程有初步了解,在数形结合、分类讨论等思想方面还有待提高

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:

①掌握指数函数的概念;

②掌握指数函数的图象

(2)技能目标:

①渗透数形结合和分类讨论的思想方法

②培养学生观察、类比、猜测、归纳的能力

(3)情感目标:

①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题

②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力

③让学生感受数学的对称美、和谐美。

(4)教学重点:指数函数的概念和图象

(5)教学难点:取适当的点作图

确定依据:幂函数和指数函数的一般形式学生容易混淆,并且学生作图的精确度还有待提高

突破难点的关键:结合二次函数、幂函数等取点的方法,再次强调间隔适当、数值大小合适、对称

三、教法分析

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解指数函数的知识,更期望能引领学生掌握研究初等函数的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,主要突出了以下几个方面:

1.创设情景.由指数函数在生活中的实际应用给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.类比及分类讨论的应用.引导学生结合幂函数的一般形式来归纳出指数函数的概念,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。华罗庚曾经说过“数离形时少直观,形离数时难入微”,在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、课外知识的拓展等部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

四、学法分析

本节课是在学习完幂函数的概念和性质之后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关幂函数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。在研究底数的限制时会遇到分类讨论等基本数学思想方法,这些方法将会贯穿整个中专的数学学习。

3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

五、程序设计

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序

1.知识的回顾及新课的导入

教师活动:

①回顾研究幂函数的一般步骤,并请学生回答幂函数的相关知识

②用电脑展示两个实例,第一个是生物中细胞分裂的例子,第二个是机器价值的折旧率问题

③引导学生进行类比

④分析出对指数函数底数讨论的必要性以及分类的方法。

学生活动:

①回忆幂函数的概念及图象和性质

②分别写出细胞个数y与分裂次数x的关系式和机器价值y与经过年数x的关系式,并互相交流

③比较幂函数的一般形式和上述两个式子,归纳指数函数的一般形式

④根据底数分类讨论的结果,试着写出指数函数的定义域和值域

设计意图:通过回顾幂函数的知识,再现研究函数的基本步骤;通过生活实例激发学生的学习兴趣,通过类比扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备。

2.启发诱导、探求新知

教师活动:

①作图步骤回顾

②给出两个简单指数函数,多媒体演示取点和作图,强调虚线、点、函数图象的先后顺序

学生活动:

①回忆画函数图象的步骤

②注意取点的间隔及大小

③观察作图过程以及图象的形状和底数的关系

设计意图:使学生对作图步骤加深印象,对取点的合适度有更深刻的理解,使用多媒体画图以增加学生练习的时间,强调作图过程的规范性,培养学生良好的作图习惯

3.巩固新知、反馈回授

教师活动:

①多媒体演示练习1

②给出两个指数函数,要求学生对照例题作图并指导取点

③请一名学生板演作图,对其作图步骤和图象精确度进行点评

④引导学生对底数和图象形状的关系进行归纳

学生活动:

①口答练习1

②在草稿纸上画出两个指数函数的图象

③观察图象形状和底数并互相交流,最后得出两者的关系

设计意图:加深学生对指数函数一般形式的印象以及和幂函数一般形式的区别;让学生动手作简单的指数函数的图象,能够进一步规范学生的作图习惯,也能让学生通过作图发现底数和图象形状的关系,对深刻理解本小节的内容有着一定的促进作用。

4.归纳小结、深化目标

教师活动:

①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;

②布置课后及拓展作业

学生活动:完成对指数函数的概念和图象基本形状的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5.板书设计

本节课以多媒体为主,同时考虑到板书在教学过程中发挥的作用,我设计了由两个板块构成的板书,板面分配比例为1:2,第一板块包含三个部分,一是指数函数的一般形式,二是定义域和值域,三是作图的基本步骤;第二板块留给学生板演练习2

六、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如回忆幂函数知识的记忆评价、情景导入的表达式评价、得出指数函数一般形式的归纳评价、作图时取点准确性和图象精确度的评价、小结时的`表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

指数函数教案 篇10

一、说教材

◆教材的地位及前后联系

本节课是《中等职业教育规划教材数学》第一册第四章第二节《指数函数》。本节课是学生在已掌握了函数的一般性质之后系统学习的第一个函数,通过学习可进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,也为今后进一步研究函数的性质特别是后面的对数函数打下坚实的基础,同时也培养了学生对函数的应用意识。因此本课有十分重要地位和作用,它对知识起到了承上启下的作用。

◆教学目标:

☆知识目标:

1、掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数;

2、掌握指数函数的图像和性质;

3、能根据单调性解决比较大小的问题。

☆能力目标:

1、培养学生观察、分析、分类、归纳、探索发现解决问题的能力,体会从特殊到一般的研究方法和分类讨论思想。

2、提高学生运用现代信息化手段解决数学问题的能力。

☆情感目标

1、通过问题的解决,树立学生的自信心,体会成功与快乐;

2、渗透数形结合、分类讨论的思想,激发学生学习数学的兴趣,培养学生探索精神和创新意识;

3、通过学习让学生感受到数学与现实生活的联系,让学生发现生活中的函数问题。

◆教材的重点和难点:

☆教学重点:指数函数的概念、图像和性质;

☆教学难点:如何由图像归纳指数函数的性质以及性质的应用。

二、◆学情分析

根据这几年的教学我发现学生在后面学习中一遇到指对数问题就发蒙,原因是什么呢?问题就出在学生刚刚学完第三章函数的性质,应用的又是初中比较熟悉的一元二次函数。一下子出现了一个非常陌生的函数而且需要记很多性质,学生感觉很吃力。对于我任教的12财会班的学生整体理论知识水平参差不齐,学生缺乏自主探索、发现的意识。但是性格活泼、兴趣广泛,乐于实践。因此我在备课时以学生为本,以学生活动为主线,从兴趣出发,由2012年春节晚会的魔术引出本节课的指数函数,让学生从特殊到一般去认识指数函数,然后通过多媒体课件的充分展示让学生分组讨论、归纳出指数函数的性质。

三、教法、学法

◆教学方法:启发、合作探究、讲练结合等教学方法。充分遵循“教师为主导,学生为主体”的教学原则,采用多媒体辅助教学手段,借助多媒体,演示指数函数的图像形成过程,便于总结函数的性质。

◆学习方法:采用自主探究、小组合作、观察归纳的学习方法。

四、教学程序

◆教学流程:

教学流程设计

1、创设情境,导入新课

2、构建模型,形成概念

3、深入探究,发现性质

4、讲练结合,巩固提高

5、课堂小结,构建体系

6、作业布置,延伸课堂

◆教学过程:

1、创设情境,导入新课

通过春节的撕报纸的魔术调动学生的兴趣,教师接着引导学生分析撕报纸得到的分数与撕报纸的次数之间的函数关系,分析出撕报纸得到的每一分小报纸的面积与撕报纸的次数之间得到的函数关系,从而建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

2、构建模型,形成概念

通过两个具体的指数函数模型,给出指数函数概念,让学生体会由特殊到一般的思想,并通过练习一判断一个函数是否是指数函数,加深学生对指数函数概念的理解。

3、深入探究,发现性质

在这个环节,函数图像的性质是本节课的重点也是难点,我准备采用多媒体技术辅助教学突破重点、难点,这一环节关键是弄清楚底数a的变化对函数图像及性质的影响,利用多媒体动感显示,通过颜色的区别,加深感性认识,非常直观形象地演示a的变化与图像的变化规律,突破静态思维,使难点迎刃而解。

华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。”探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图像突破,体会数形结合的思想。通过两个指数函数的作图过程巩固学生作图能力,让学生初步发现图像规律。紧接着同时通过软件让学生举出4个指数函数,通过软件快速画出四个具体的指数函数图像,充分引导学生通过观察图像发现指数函数的图像规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

4、讲练结合,巩固提高

教师通过对例题一比较两个函数值的大小、例题二求函数的定义域引导学生如何使用函数的性质解决问题,同时通过学生进行一些巩固练习使学生对函数能进行较为基本的应用。

5、课堂小结,构建体系

小结环节,让学生自己总结函数的概念和性质,让学生建立研究函数的知识体系

6、作业布置,延伸课堂

作业布置环节必做题巩固学生上课内容,选做题“古莲子年龄之谜”的问题为学习能力较强的同学更大的发挥空间,因材施教,分层作业,巩固提高,为后续的学习奠定基础,同时也拓展学生的知识视野。

指数函数教案 篇11

高一数学指数函数教案:教学目标

1.使学生掌握指数函数的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

高一数学指数函数教案:教学建议

高一数学指数函数教案:教材分析

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数

时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

高一数学指数函数教案:教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

的样子,不能有一点差异,诸如

,

等都不是指数函数.

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

指数函数教案 篇12

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数。

(2)对底数的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

指数函数教案 篇13

一、教材分析

1。《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2。教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1。创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2。强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3。突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4。注意数学与生活和实践的联系。数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

三、学法指导

本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1。再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2。领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3。在互相交流和自主探

推荐阅读

上一篇:小学美术教案分享六篇 下一篇:身体的秘密教案精品四篇
back_img
推荐标签