back_img
好工具 >范文 >实用文

高三数学教学优秀教案

2024-09-23 11:40:18

【#实用文# #高三数学教学优秀教案#】作为一位无私奉献的教师,我们难以避免准备教案。教案是我们的教学指南,可以有效提高教学效果。教案要怎么写呢?以下是好工具范文网小编帮大家整理的高中数学优秀教案(通用12篇),希望能够帮助到大家。

高三数学教学优秀教案 篇1

一、教学内容

本学期文科数学内容为苏教版普通高中课程标准实验教科书(必修)3、选修系列1-1两册全部内容,根据情况决定是否上一点系列3的选讲内容,

二、教学指导

1、认真研究和学习新课程数学课程标准的教学要求。通过学习,明确高中数学课程的总目标和具体目标,准确把握每一个知识点的教学难度,切实领会新大纲、新教材的意图,力求恰到好处的教学成效。

2、教学应注意突出新课程理念,要突出新课程的教学六环节,特别是情境创设、问题建构、学生活动,但反对盲目套用,要重视让学生体会、发现知识的发生过程,要注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,要提高数学探究能力、建模能力和交流能力,进一步发展学生的数学实践能力,这也是新课程标准的核心要求。

3、教学要注重基本知识、基本技能、基本方法的掌握,要面向全体学生,绝不能将新授课上成高三的复习课,练习要以课本为主,适当补充难易适中的课外习题,保证学生经过自身努力能基本完成。要体会教材循序渐进、螺旋上升的编写意图,更要领会《标准》和《教学要求》的精神,准确把握好度,切忌将选修内容纳入必修课程。

4、教学要注重激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的'科学价值和人文价值,从而进一步树立辨证唯物主义的世界观,实实在在地在培养学生数学素养上下功夫。

5、要尽可能在每学期结束按要求完成教学任务,既不要提前,也不要滞后。以便于全区统一调查测试。要准确理解广东高考改革以后的高考新导向和08年广东省高考方案,使教学确实具有实效性、针对性和科学性。

6、系列3的课程可以按讲座形式开设,每本书开设一、两次即可,主要是布置任务以学生自学为主,以拓宽学生的知识面为目的。另外,望能结合教学内容,安排适度的阅读、调研、实践等研究性学习活动。

7、月考单独出题。命题原则是面向全体学生,以课本例、习题为主,采用高考试卷模式,适当渗透高考要求,充分保护学生学习数学的积极性。

8、试卷分值、试卷结构、考试时间待定,难度系数为0.600.65。

9、培优补差按分部要求安排。在期末对培训内容进行一次质量检测。

三.课节设置

四.教研活动

1.充分利用有利条件课组成员在一个办公室,每天研究讨论第二天的内容,教法。总结当天的得失之处。

2.每周四开本组教研会,集体备课并讨论研究布置下周的教育教学任务。

3.本学期每人上一堂公开课,计划上交教学处。

4.培优补差任务按轮流负责知识点的方法。培优内容为必修五,补差内容为本学期难点。

5.每个知识点的学案,单元检测,假期作业,各种考试试卷轮流出题,具体安排每周课组会上讨论通过。

6.争取做一个课题,具体内容与安排由科组合议。

高三数学教学优秀教案 篇2

人教版高三数学上册教学计划

该标准第一次大量引入了选修专题,这些专题内容新颖,对中学教师的教学提出了严峻的挑战。

对称与群是其中专题之一,很多教师对本专题内容感到很陌生,无法进行教学。

因此,高师生在走出校门之前能得到相关的高中选修课程学习是十分必要的。

基于以上原因在高师生中作“对称与群”教学设计实验研究。

本研究首先对贵州省少数民族地区高中教师和高师生作关于“对称与群”了解情况问卷调查,确定进行教学设计的必要性,然后根据对称与群自身具有的逻辑体系,采用现代教学设计的.“系统设计法”,其中包括学习需要分析、教学内容分析、学习者分析、教学策略选择、教学过程确定、教学评价等环节。

其次,本研究进行了“对称与群”这一选修专题的试验班教学,对所作的教学设计的科学性、所编教材的有效性进行了实践检验,结果表明:

“对称与群”教学设计方案是可行且有效的。

同时,类比方法是学习“对称与群”最常用的方法;对学生的学业评价采用多种评价方式结合。

最后对本研究出现的问题进行总结并提出对本研究的期望..……

高三数学教学优秀教案 篇3

一、总的情况

执教高三189、191两个理科班,总人数115人。189班学习习惯不好,边缘生特别多;优生少且普遍基础不好,习惯差,学习主动性不强;191班一些学生成绩极不稳定,191班培尖任务艰巨。

二、指导思想

研究新教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。

三、教学设想

㈠总的原则

1、认真研读xx数学考试大纲及湖南省考试说明的说明,做到宏观把握,微观掌握,注意高考热点,特别注意长沙的信息。根据样卷把握第二、三轮复习的整体难度。

2、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。

3、立足基础,不做数学考试大纲以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。

㈡.体现数学学科特点,注重知识能力的提高,提升综合解题能力

1、加强解题教学,使学生在解题探究中提高能力。

2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。

不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。

多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。

㈢合理安排复习中讲、练、评、辅的时间

1、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”

2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果

3、注重实效,努力提高复习教学的效率和效益

1、淡化各自为战,加强备课小组交流合作,资源共享。

2、坚持学生主题,教师主导。

3、更新教学手段,提高复习效率

(1)用电脑多媒体技术辅助数学复习教学,提高课堂教学效率。

(2)利用电脑课件和积件,突破教学难点。

4.注重学法指导及心理辅导

(1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。

(2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。

(3)加强边缘生的个别辅导。a类边缘生采用各个击破,b类边缘生抓基础,促能力,a类边缘生注意备课组集体研究,个别指导;b类边缘生手把手的教,主要课堂重点关注,课后重点辅导。㈤第二、三轮复习穿插进行

四、教学重点

1、数学思想方法

2、教材的重点、高考的热点

3、依据新大纲、夯实基础,突出新增内容,新课程增加内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。

4、注意以单元块的纵向复习为主到综合性横向发展为主。

从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。

注意知识的交叉点和结合点。

五、教学措施

1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。

第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:

①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。

②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。

③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。

最后,就是冲刺阶段,也称为“备考篇”。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,这阶段要求学生直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并要求学生做到:

①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。

②抓思维易错点,注重典型题型。

③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。

④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。

⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考

六、目标承诺

1、毕业会考通过率不低于95%。

2、高考数学成绩不拖后腿。

3、高考人平分在重点学排名不低于xx年。

高三数学教学优秀教案 篇4

一、教学目标

【知识与技能】

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】

通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点

【重点】

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】

二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程

(一)复习旧知,引出课题

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高三数学教学优秀教案 篇5

尊敬的各位评委、各位老师:

大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。

一、教学背景的分析

1、教材分析直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。

2、学情分析我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

3、教学目标

(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;

(2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程;

(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;

(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。

4、教学重点与难点

(1)重点:直线点斜式、斜截式方程的特点及其初步应用。

(2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。

二、教法学法分析

1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。

2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。下面我就对具体的教学过程和设计加以说明:

三、教学过程的设计及实施

整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:温故知新,澄清概念————直线的方程深入探究,获得新知————————点斜式拓展知识,再获新知————————斜截式小结引申,思维延续————————两点式平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。

(一)温故知新,澄清概念————直线的方程问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?

[学生活动]

通过动手画图,思考并尝试用语言进行初步的表述。

[教师活动]

对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。

[设计意图]

从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。问题二:若直线经过点A(—1,3),斜率为—2,点P在直线l上。

(1)若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是;

(2)画出直线l,你能求出直线l的方程吗?

(3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的关系式?

[学生活动]

学生独立思考5分钟,必要的话可进行分组讨论、合作交流。

[教师活动]

巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点A外),点P与定点A(—1,3)所确定的直线的斜率恒等于—2,体会“动中有静”的思维策略。

[设计意图]

复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y—1=0。反过来,以方程2x+y—1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。

(二)深入探究,获得新知————点斜式

问题三:

①若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。

②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?

[学生活动]

①学生叙述,老师板书,强调斜率公式与点斜式的区别。

②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。

[设计意图]

由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。

问题四:分别求经过点且满足下列条件的直线的方程(1)斜率;(2)倾斜角;(3)与轴平行;(4)与轴垂直。[练习]P95.1、2。

[学生活动]

学生独立完成并展示或叙述,老师点评。

[设计意图]

充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。

(三)拓展知识,再获新知————斜截式

问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。(2)若直线l斜率为k,且与y轴的交点是P(0,b),求直线l的方程。

[学生活动]

学生独立完成后口述,教师板书。

[设计意图]

由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。

[练习]P95.3。

[设计意图]

充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。

(四)小结引申,思维延续————两点式

课堂小结

1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)

2、哪些地方还没有学好?

问题六:

(1)直线l过(1,0)点,且与直线平行,求直线l的方程。

(2)直线l过点(2,—1)和点(3,—3),求直线l的方程。

[学生活动]

学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。

[教师活动]

教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。

[设计意图]

(1)小题与上一节的平行综合,学生应该有思路求出方程;

(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。分层作业必做题:P100。A组:1、(1)(2)(3)、5。选做题:P100。A组:1、(4)(5)(6)。

[设计意图]

通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。

四、教学特点分析

(一)实例引导。

在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。

(二)启发式教学。

教学中总是以提问的方式叙述所学内容,如:

1、直角坐标系内的所有直线都有点斜式方程吗?

2、截距是距离吗?它可以是负数吗?

3、你会求直线在轴上的截距吗?

4、观察方程,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。

(三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。

附:

板书设计

屏幕3.2直线的方程3.2.1直线的点斜式方程

问题一:直线的方程

问题二:实例引导

问题三:直线的点斜式方程

问题四:练习答案

问题五:直线的斜截式方程截距

问题六:实例引导,思维延续

高三数学教学优秀教案 篇6

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

高三数学教学优秀教案 篇7

一、教学目标

1.知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点

重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具

1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规

四、教学思路

(一)创设情景,揭示课题

1.我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

练习反馈

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影

投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本P16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1.书画作业,课本P17练习第5题

2.课外思考课本P16,探究(1)(2)

高三数学教学优秀教案 篇8

【教学目标】

1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2、能根据几何结构特征对空间物体进行分类。

3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1、情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2、展示目标、检查预习

3、合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的`共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

5、典型例题

例1:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

答案A B

6、课堂检测:

课本P8,习题1.1 A组第1题。

7、归纳整理

由学生整理学习了哪些内容

【板书设计】

一、柱、锥、台、球的结构

二、例题

例1

变式1、2

【作业布置】

导学案课后练习与提高

1.1.1柱、锥、台、球的结构特征

课前预习学案

一、预习目标:

通过图形探究柱、锥、台、球的结构特征

二、预习内容:

阅读教材第2—6页内容,然后填空

(1)多面体的概念:叫多面体,

叫多面体的面,叫多面体的棱,

叫多面体的顶点。

①棱柱:两个面,其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱

②棱锥:有一个面是,其余各面都是的三角形,这些面围成的几何体叫作棱锥

③棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。

(2)旋转体的概念:叫旋转体,叫旋转体的轴。

①圆柱:所围成的几何体叫做圆柱

②圆锥:所围成的几何

体叫做圆锥

③圆台:的部分叫圆台

④球的定义

思考:

(1)试分析多面体与旋转体有何去别

(2)球面球体有何去别

(3)圆与球有何去别

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

疑惑点疑惑内容

高三数学教学优秀教案 篇9

一、教材分析:

1、教材的地位与作用:

线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的.有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

2、教学重点与难点:

重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

难点:在可行域内,用图解法准确求得线性规划问题的最优解。

二、目标分析:

在新课标让学生经历"学数学、做数学、用数学"的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

知识目标:

1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行

域和最优解等概念;

2、理解线性规划问题的图解法;

3、会利用图解法求线性目标函数的最优解.

能力目标:

1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

2、在变式训练的过程中,培养学生的分析能力、探索能力。

3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

情感目标:

1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

三、过程分析:

数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。

1、创设情境,提出问题:

在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。

接着我设置了一个具体的"问题"情境,即世界杯冠军意大利足球队(插图片)营养师布拉加经常遇到的这样一类营养调配问题:

甲、乙、丙三种食物的维生素A、B的含量及成本如下表:

维生素A(单位/千克)

400

600

400

维生素B(单位/千克)

800

200

400

成本(元/千克)

7

6

5

布拉加想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?

同学们,你能为布拉加解决这个棘手的问题吗?

首先将此实际问题转化为数学问题。我请学生完成这一过程如下:

解:设所购甲、乙两种食物分别为x、y千克,则丙食物为10-x-y千克.

由题意可知x、y应满足条件:

即①

又设成本为z元,则z=7x+6y+5(10-x-y)=2x+y+50.

于是问题转化为:当x、y满足条件

①,求成本z=2xy50的最小值问题。

【设计意图】数学是现实世界的反映。通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。

2、分析问题,形成概念

那么如何解决这个求最值的问题呢?这是本次课的难点。我让学生先自主探究,再分组讨论交流,在学生遇到困难时,我运用化归和数形结合的思想引导学生转化问题,突破难点:⑴学生基于上一课时的学习,讨论后一般都能意识到要将不等式组①表示成平面区域。(教师动画演示画不等式组①表示的平面区域。)于是问题转化为当点(x,y)在此平面区域内运动时,如何求z=2xy50的最小值的问题。⑵由于此问题难度较大,我试着这样引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2xy50作某种几何解释呢?学生很自然地想到要将等式z=2xy50视为关于x,y的一次方程,它在几何上表示直线。当z取不同的值时可得到一族平行直线。于是问题又转化为当这族直线与此平面区域有公共点时,如何求z的最小值。⑶这一问题相对于部分学生来说仍有一定的难度,于是我继续引导学生:如何更好地把握直线2xy50=z的几何特征呢?学生讨论交流后得出要将其改写成斜截式y=-2xz-50。至此,学生恍然大悟:原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小。于是问题又转化为当直线y=-2xz-50与平面区域有公共点时,在区域内找一个点P,使直线经过点P时在y轴上的截距最小。

(紧接着我让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元。)

【设计意图】数学教学的核心是学生的再创造。让学生自主探究,体验数学知识的发生、发展的过程,体验转化和数形结合的思想方法,从而使学生更好地理解数学概念和方法,突出了重点,化解了难点。

就在学生趣味盎然之际,我就此给出相关概念:

不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件。z=2xy50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数。由于z=2xy50又是x、y的一次解析式,所以又叫做线性目标函数。

一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。其中使目标函数取得最大值或最小值的可行解都叫做这个问题的最优解。象上述求解线性规划问题的方法叫图解法。

由前面实际问题的解决自然地过渡到新概念的讲解,使得知识的衔接较为顺畅,概念的形成水到渠成。

3、反思过程,提炼方法

解题回顾是解题过程中重要又常被学生忽略的一个环节。我借用多媒体辅助教学,动态演示解题过程,引导学生归纳、提炼求解步骤:

(1)画可行域--画出线性约束条件所确定的平面区域;

(2)过原点作目标函数直线的平行直线l0;

(3)平移直线l0,观察确定可行域内最优解的位置;

(4)求最值--解有关方程组求出最优解,将最优解代入目标函数求最值。

简记为画--作--移--求四步。

4、变式演练,深入探究

为了让学生更好地理解图解法求线性规划问题的内在规律,我在例1的基础上设计了例2和两个变式:

例2.设z=2x-3y,式中变量x、y满足下列条件,求z的最大值和最小值。

【设计意图】进一步强调目标函数直线的纵截距与z的最值之间的关系,有时并不是截距越大,z值越大。

变式1.设z=axy,式中变量x、y满足下列条件,若目标函数z仅在点(5,2)处取到最大值,求a的取值范围。

变式2.设z=axy,式中变量x、y满足下列条件,若使目标函数z取得最大值的最优解有无数个,求a的值。

【设计意图】用已知有唯一(或无数)最优解时反过来确定目标函数某些字母系数的取值范围来训练学生从各个不同的侧面去理解图解法求最优解的实质,培养学生思维的发散性。

(以上两个变式均让学生用几何画板进行实验,探求解决方法。并引导学生总结出:最优解一定位于多边形可行域的顶点或边界直线处。)

5、运用新知,解决问题

"学数学而不练,犹如入宝山而空返"。为了及时巩固知识,反馈教学信息,我安排了如下练习:

练习1:教材p64练习第1题

【设计意图】及时检验学生利用图解法解线性规划问题的情况。

练习2:设z=2xy,式中变量x、y满足下

列条件①,求z的最大值和最小值。

(学生独立完成巩固性练习,老师投影有代表性的学生解答过程,给予积极性的评价,并强调注意点。同座同学间相互交流、批改和更正。)

【设计意图】除了帮助学生巩固新学的知识,还能引导学生运用新知识,迅速清楚地发现以前用解不等式的知识错解此类题的原因。让学生再一次深刻体会到数形结合的妙处,同时又巩固了旧知识,完善了知识结构体系。

6、归纳总结,巩固提高

(1)归纳总结

为使学生对所学的知识有一个完整而深刻的印象,我请学生从以下两方面自己小结。

(1)这节课学习了哪些知识?

(2)学到了哪些思考问题的方法?

(学生回答)

【设计意图】有利于学生养成及时总结的良好习惯,并将所学知识纳入已有的认知结构,同时也培养了学生数学交流和表达的能力。

(2)巩固提高

布置作业:

1.阅读本节内容,完成课本P65习题7.4第2题

2.思考题:设z=2x-y,式中变量x、y满足下列条件

且变量x、y为整数,求z的最大值和最小值。

【设计意图】让学生巩固所学内容并进行自我检测与评价,并为下一课时解决实际问题中的最优解是整数解的教学埋下伏笔。

四、教法分析:

鉴于我校高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课我以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。

(1)设置"问题"情境,激发学生解决问题的欲望;

(2)提供"观察、探索、交流"的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。

(3)利用多媒体辅助教学,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,又提高了教学效率。

(4)指导学生做到"四会":会疑;会议;会思;会变。在教学过程中,重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略。

五、评价分析

本节课我的设计理念遵循以下四条原则:以问题为载体;以学生为主体;以合作交流为手段;以能力提高为目的。重视概念的提取过程;知识的形成过程;解题的探索过程;情感的体验过程。学生通过自主探究、合作交流,体会合作学习的默契和谐,体会冥思苦想后的豁然开朗,体会逻辑思维的严谨美,体会一题多变的变幻美,体会数形结合的奇异美。

高三数学教学优秀教案 篇10

一、指导思想

教研组是学校教育教学工作中一个基层组织,是学校教学工作的一个重要组成部分。所以我们的一切工作必须围绕“全面提高教学质量”这个中心任务而开展。继续学习《浙江省深化普通高中课程改革方案》等相关文件,在校长室、教教务处的领导下,继续做好校本教研。在抓好教学常规,落实学校各项具体工作同时,认真学习课改纲要,转变教学理念,开展“课堂变革”,积极打造“主动—有效”课堂。

二、具体措施

(一)加强教师师德修养的培训。

(二)通过研讨课进一步提高我组信息技术的运用能力。

(三)校本教研培训工作。

(四)开展“一师一优课,一课一名师”活动,鼓励老师积极参与晒课,优课。

三、抓实常规管理,提高教师的业务水平。

1、 加强听课、评课活动:

提倡组内相互间的随堂听课,及时掌握教学的第一手资料,提高教学质量。组内教师对学校内外的各类公开课展示课应予以充分关注。根据学校要求:一般教师不少于10节,有听课笔记和评课意见。加强常态课的分析,备课组长每学期听10节常态课,并做好交流工作。备课组长负责收集组员的听课、评课意见资料,并及时做好汇总信息的工作。

2、进行教师备课改革的研究,从精备每位教师的校级公开课入手,发挥备课组集体课的优势,让每位教师在集体研课、磨课、改课中提升自身的专业水平。,实行以课前说课为核心的“说辨式”集体备课改革模式,形成“课前说课——课上跟踪——课后析课”的课堂教学技能培训管理模式,全力打造几堂精品课,在课的反复重构中提升教师的教学理念和教学能力。常规调研时将备课检查作为一个重点,及时了解教师课前、课中、课后研究教材、把握课堂实效的情况。及时总结和推广数学教师的成功经验。

3、开展教学主题活动,针对教研组的具体问题,善于发现数学教学实际中的薄弱环节,通过“微型课堂”提高在实际教学中教师设计问题和解决问题到的能力,促进我组教师的专业化发展。

4、开展校本自培,促进教师的专业化发展:

(1)利用课余时间及时的与同伴研究教学方案,探讨重难点的突破,课后沟通学生掌握情况,交流教学心得、体会,及时的总结经验与开拓创新。

(2)结合数学组教学研讨活动和学校骨干教师的示范课,拿出有质量的公开课。开展教学论坛,切实加强教师的理论水平,通过教学实践中的反思总结进一步提升自己的专业水平。

5、配合教务处的工作,开展定时备课检查,每月做好的教学反思总结督促教师做到备课有质量,有备后记。规范教研组备课组记录。

6、发展“科研型教师”队伍,提高本组成员教科研能力

(1)通过校本行动研究的继续开展,把教师的专业发展研究作为教研活动的重要内容来抓。针对教师成长中的现实问题,因地制宜开展行之有效的教科研活动,形成教学教研进修为一体的教学研修系统。

(2)积极参加课题研究,在学校教科研室指导下,每个备课组都要有核心课题。

高三数学教学优秀教案 篇11

一、说教材

1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

二、说教学目标

根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

三、说教法

本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

四、说学法

我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

好学教育:

因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

高三数学教学优秀教案 篇12

一、指导思想

高三数学教学要以《全日制普通高级中学教科书》、20xx年普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。要坚持以人为本, 强化质量的意识,务实规范求创新,科学合作求发展。

二、教学建议

1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。

《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。

注意08年高考的导向:注重能力考查,反对题海战术。《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。08年的高考试题无论是小题还是大题,都从不同的角度,不同的`层次体现出这种能力的要求和对教学的导向。这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。

2、充分调动学生学习积极性,增强学生学习的自信心。

尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。

3、注重学法指导,提高学生学习效率。

教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。

4、高度重视基础知识、基本技能和基本方法的复习。

要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。为此教师要了解学生,准确定位。精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的训练。

5、教学中要重视思维过程的展现,注重学生能力的发展。

在教学中我们发现学生不太喜欢分析问题,被动的等待老师的答案的现象很普遍,因此,教学中教师要深入研究,挖掘知识背后的智力因素,创设环境,给学生思考、交流的机会,充分发挥学生的主体作用,使学生在比较、辨析、质疑的过程中认识知识的内在联系,形成分析问题、解决问题的能力。养成他们动口、动脑、动手的习惯。

6、高中的重点知识在复习中要保持较大的比重和必要的深度。

近年来数学试题的突出特点:坚持重点内容重点考查,使高考保持一定的稳定性;在知识网络交汇点处命制试题。因此在函数、不等式、数列、立体几何、三角函数、解析几何、概率等重点内容的复习中,要注意轻重缓急,注重学科的内在联系和知识的综合。

7、 重视通性、通法的总结和落实。

教师要帮助学生梳理各部分知识中的通性、通法,把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上。通过题目说通法,而不是死记硬背。进而使学生形成一些最基本的数学意识,掌握一些最基本的数学方法,不断地提高解决问题的能力。

8、 渗透数学思想方法, 培养数学学科能力。

《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。 我们在复习中要加强数学思想方法的复习, 如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。 以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。切忌空谈思想方法,要以知识为载体,润物细无声。

9、建议在每块知识复习前作一次摸底测试,(师、生)做到心中有数。坚持备课组集体备课,把握轻重缓急,避免重复劳动,切忌与学生实际不相符。

总之,我们要加强学习、研究,注重对学生、教材、教法和高考的研究,总结经验和吸取教训,搞好第一轮复习,为第二轮复习打好基础。

三、教学进度安排

9月底前完成高三选修课内容。期中考试的范围除选修课内容外,还要涉及到排列组合、二项式定理、概率、简易逻辑、函数、不等式、数列等内容。

期中考试之后复习:向量、三角、立体几何、 解析几何等内容.

第一轮的复习要以基础知识、基本技能、基本方法为主,为高三数学会考做好准备,不要赶进度,重落实。

四、进修活动

推荐阅读

上一篇:国庆节主题活动策划方案 下一篇:腊八节社区活动策划(摘录十二篇)
back_img
推荐标签