2024七年级数学教案设计 篇1
一、第一阶段(第1周第12周):全面复习基础知识,加强基本技能训练
这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
1、重视课本,系统复习。
现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是高于教材,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。
2、 按知识板块组织复习。
把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆 。 复习中由教师提出每个讲节的复习提要,指导学生按提要复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。
3、重视对基础知识的理解和基本方法的`指导。
基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。
4、重视对数学思想的理解及运用。
如函数的思想,方程思想,数形结合的思想等
二.第二阶段(第13周第18周):综合运用知识,加强能力培养
中考复习的第二阶段应以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。
培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。
2024七年级数学教案设计 篇2
教学目标:
1、使学生在现实情境中理解有理数加法的意义
2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则
重点:异号两数相加的法则
教学过程:
一、讲授新课
1、同号两数相加的.法则
问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作—5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(—5)+(—3)=—8(m)
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则
教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(—3)=2(m)
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
二、巩固知识
课本P18例1,例2、课本P118练习1、2题
三、总结
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
四、布置作业
课本P24习题1.3第1、7题。
2024七年级数学教案设计 篇3
教学建议
(一)教材分析
1、知识结构
2、重点、难点分析
重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.
难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.
(二)教学建议
1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.
2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:
(1)假命题可分为两类情况:
①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.
②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的命题.
(2)是否是命题:
命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.
另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.
(3)命题的组成
每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.
有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.
另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
教学设计示例:
教学目标
1.使学生对命题、真命题、假命题等概念有所理解.
2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式.
3.会判断一些命题的真假.
教学重点和难点
本节的重点和难点是:找出一个命题的题设和结论.
教学过程设计
一、分析语句,理解命题
1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:
(1)我是中国人。
(2)我家住在北京。
(3)你吃饭了吗?
(4)两条直线平行,内错角相等。
(5)画一个45°的角。
(6)平角与周角一定不相等。
2.找出哪些是判断某一件事情的.句子?
学生答:(1),(2),(4),(6)。
3.教师给出命题的概念,并举例。
命题:判断一件事情中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)
如:的句子,叫做命题,分析(3),(5)为什么不是命题.
教师分析以上命题
(1)对顶角相等。
(2)等角的余角相等。
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。
(4)如果a>0,b>0,那么a+b>0。
(5)当a>0时,|a|=a。
(6)小于直角的角一定是锐角。
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。
(7)a>0,b>0,a+b=0。
(8)2与3的和是4。
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。
4.分析命题的构成,改写命题的形式。
例两条直线平行,同位角相等.
(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”。
(2)改写命题的形式。
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”
请同学们将下列命题写成“如果……,那么……”的形式,例:
①对顶角相等。
如果两个角是对顶角,那么它们相等。
②两条直线平行,内错角相等。
如果两条直线平行,那么内错角相等。
③等角的补角相等。
如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)
以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”
提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出。
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”
二、分析命题,理解真、假命题
1.让学生分析两个命题的不同之处。
(l)若a>0,b>0,则a+b>0
(2)若a>0,b>0,则a+b<0
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。
不同之处:(1)中的结论是正确的,(2)中的结论是错误的。
教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。
2.给出真、假命题定义
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。
注意:
(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。
(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。
(3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题。
(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题。
3.运用概念,判断真假命题。
例请判断以下命题的真假。
(1)若ab>0,则a>0,b>0。
(2)两条直线相交,只有一个交点。
(3)如果n是整数,那么2n是偶数。
(4)如果两个角不是对顶角,那么它们不相等。
(5)直角是平角的一半。
解:(l)(4)都是假命题,(2)(3)(5)是真命题.
4.介绍一个不辨真伪的命题.
“每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定。
5.怎样辨别一个命题的真假。
(l)实际生活问题,实践是检验真理的唯一标准。
(2)数学中判定一个命题是真命题,要经过证明。
(3)要判断一个命题是假命题,只需举一个反例即可。
三、总结
师生共同回忆本节的学习内容。
1.什么叫命题?真命题?假命题?
2.命题是由哪两部分构成的?
3.怎样将命题写成“如果……,那么……”的形式。
4.初步会判断真假命题.
教师提示应注意的问题:
1.命题与真、假命题的关系。
2.抓住命题的两部分构成,判断一些语句是否为命题。
3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面。
4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。
四、作业
1.选用课本习题。
2.以下供参选用。
(1)指出下列语句中的命题.
①我爱祖国。
②直线没有端点。
③作∠AOB的平分线OE。
④两条直线平行,一定没有交点。
⑤能被5整除的数,末位一定是0。
⑥奇数不能被2整除。
⑦学习几何不难。
(2)找出下列各句中的真命题。
①若a=b,则a2=b2。
②连结A,B两点,得到线段AB。
③不是正数,就不会大于零。
④90°的角一定是直角。
⑤凡是相等的角都是直角。
(3)将下列命题写成“如果……,那么……”的形式。
①两条直线平行,同旁内角互补。
②若a2=b2,则a=b。
③同号两数相加,符号不变。
④偶数都能被2整除。
⑤两个单项式的和是多项式。
2024七年级数学教案设计 篇4
●教学目标
知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的概念和求一个数的绝对值
教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,
一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两
又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系②是个距离的概念
练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6, , 0, -10, +10
解:|-1.6|=1.6 ||= |0|=0
|-10|=10 |+10|=10
2、练习2:填表
相反数 绝对值 2.05 1000 0 - -1000 -2.05
(以表格的`形式将绝对值和相反数进行比较,为归纳绝对值的特征作准备)
3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:
1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
4、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
5、例2、求绝对值等于4的数。
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4,|-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
∴绝对值等于4的数是+4和-4
注意:说明符号“∵”读作“因为”,“∴”读作“所以”
6、练习本:做书上16页课内练习3、4两题。
四、归纳小结
本节课我们学习了什么知识?
你觉得本节课有什么收获?
由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
让学生去寻找一些生活中只考虑绝对值的实际例子。
课本16页的作业题。
2024七年级数学教案设计 篇5
1、教学资源分析
采用多媒体课件,导学案进行教学。
2、教学内容分析
在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。
解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x
●重点
一元一次不等式的解法。
●难点
不等式性质3在解不等式中的运用是难点
3、教学目标分析
●目标
1.使学生了解一元一次不等式的概念;
2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。
3.经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。
●目标解析
达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。
达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x
达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。
4、学习者特征分析
本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。
5、教学过程设计
<一>、问题导入,探索新知1
问题1:举出一元一次方程的例子?
【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。
问题2:
将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征?
通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。
问题3:学生举一元一次不等式的例子,学生判断。
师:判断下列各式是否是一元一次不等式?
①②③④⑤
⑥
【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。
<二>、探索新知2
通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x
【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x
师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题
(1)解方程解不等式
2(1+x)=3 (1) 2(1+x)<3>
学生回答不等式含有分母
师:怎样变形使不等式不含分母?
师生共同去分母解(2)题
师:通过(1)、(2)题的学习你有什么发现?
生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1.
师:在解(1)和(2)题的过程中注意些什么?
生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的'系数是负数,则不等号的方向改变。
【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。
练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。
解:2x-2+2<3x>
2x-3x<-2+2
-x<0>
本节课你学会了些什么?
解一元一次不等式和解一元一次方程有哪些相同和不同之处?
【设计意图】通过问题引导学生再次回顾本节课。
<四>布置作业
教科书习题9.2第1,2,3,题
<五>目标检测
解一元一次不等式?,并把它的解集在数轴上表示出来.
6、教学评价的设计
本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。