back_img
好工具 >范文 >实用文

2024八年级人教数学教案(汇集六篇)

2024-09-05 08:30:39

【#实用文# #2024八年级人教数学教案(汇集六篇)#】时间过得真快,总在不经意间流逝,我们又有了新的学习内容,何不赶紧为即将开展的教学工作做一个计划呢?以期更好地开展接下来的教学工作,下面是小编帮大家整理的2024年人教版八年级下册数学教学计划,欢迎阅读,希望大家能够喜欢。

2024八年级人教数学教案 篇1

一、教学目标

1、类比分数约分,掌握分式约分方法,熟练进行约分

2、经历从分数的约分到分式的约分的类比探索、归纳过程,明确分式约分的概念和依据。渗透数学中的类比数学思想。

3、在对分式约分的过程中,由繁到简,使学生感受数学的简洁美。

二、重点:如何进行分式约分

难点:分子分母为多项式的分式如何约分

三、教材分析

本节课是冀教版八年级上册第十四章第一节的第二课时,它是分式基本性质的运用,也是后面学习分时乘除法运算的基础,起着承上启下的的作用

四、学情分析

学生在小学学过了分数的约分,七年级学习了因式分解,上节课又学习了分式的基本性质,这些都是学好分式约分的基础

五、教法学法

自学点拨 小组合作

六、教学过程

一)导入

上节课,我们利用类比思想,由分数认识了分式,由分式的基本性质通过观察、猜想、验证、归纳等环节得到了分式的基本性质,这节课,我们利用分式的基本性质继续探究新知,板书课题:14。1分式(2)约分

【设计意图:通过简单的开场白,使学生注意力集中到课堂上,头脑中马上回想上节课的.内容,而且知道了要利用分式的基本性质来探究新知,明确了学习的方向。】

二)知识储备

设计意图:通过第一个小题,使学生回想分数的约分方法,为类比引入分式的约分服务,第二小题的设置是为了让学生回忆因式分解的方法,如果忘记了,旁边给了小贴士,帮助回忆

三)类比引新

【设计意图:课上的检测很重要,但有时由于课上的突发事件而不能完成,看情况而定】

结束语:数学的美无处不在,今天,我们学习了分式的约分,这个由繁到简的过程中,充分展示了数学的简洁美,然我们继续努力,去发现,去体会数学的美吧!

2024八年级人教数学教案 篇2

新的一学期又开始了,本学期我担任八年级(1)、(4)两班数学的教学工作。八年级应该说是初中阶段非常重要的一个阶段,就数学学科来说,不仅教学内容在整个初中数学中大都占有重要地位,而且八年级也是学生逐步形成数学素养,养成良好学习方法的时期。因此,制定计划如下:

一、指导思想

以新的课程标准为指导,合理利用“五步三查”教学模式,不断钻研教材,根据学生的个性特征,有针对性的开展数学教学,培养学生学习数学的兴趣,树立学好数学的信心,让学生在实践中锻炼,提高分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。在学生所学知识的掌握程度上,学生仍然缺少推理题训练,推理的思考方法与写法上均存在着一定的困难。在学习能力上,学生课外主动获取知识的能力较差。为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书。在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质。

三、教材分析

第十一章、三角形

了解与三角形有关的线段和角,要求学生会画任意三角形的高、中线和角平分线,探索三角形以及多边形的内角与外角。进一步丰富学生对图形的认识和感受,通过多提问题,留给学生足够的时间思考,让学生经历得出结论的过程。

第十二章、全等三角形

主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件,更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十三章、轴对称

立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十四章、整式的乘法与因式分解

主要掌握整式的乘除运算、乘法公式以及因式分解,引导学生分析法则、公式的结构特征,熟练进行运算。本着多方法、高要求的原则,鼓励学生找出因式分解与整式乘法的关系,使不同层次的学生都能学到相关知识。

第十五章、分式

通过与分数的对比引入分式的概念,通过与分数运算的类比引入分式的运算、分式的变形以及可化为一元一次方程的分式方程的解法,为今后继续学习数的运算、解方程等奠定一定的基础。教授本章知识所用的类比、转化的研究方法对于提高学生思维能力,指导学生独立研究问题的方法有着深远的影响.通过应用题的教学,增强学生应用数学的意识,对于数学大众化的推进有着积极的意义.

四、教学措施

1、认真学习钻研新课标,熟悉教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。

4、不断改进教学方法,提高自身业务素养。积极与其他老师沟通,加强教研教改,提高教学水平。

5、教学中注重自主学习、合作学习、探究学习。

6.经常听取学生良好的合理化建议,做好“培优提中扶差”工作。

五、教学进度表

2024八年级人教数学教案 篇3

一、学情分析

从上学期的期末考试来看,本班无论优秀率还是合格率都有不小的退步。优秀率仅仅只有13%,而合格率也只达到40%,两极分化的现象再一次增大,与我预期的目标有较大的差距。通过调阅学生的试卷,发现学生在知识运用上很不熟练,特别是对于解答综合性习题时欠缺灵活性。

二、指导思想

坚持党的教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向45分钟要质量。一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。并通过本学期的课堂教学,完成八年级下册的数学教学任务。

三、教材目标及要求:

1、二次根式的重点是二次根式的运算,难点是根式四则混算及实际应用。

2、勾股定理:会用勾股定理和逆定理解决实际问题。其性质解决一些实际问题。

3、一次函数的重点是掌握一次函数的概念、性质,理解变量与常量的辩证关系,进一步认识数形结合的思维方法。

4、平行四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

要求:知识技能目标:掌握二次根式的概念、性质及计算;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;学习一次函数的图像、性质与应用;会分析数据并从中获取总体信息。

过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。班级教学目标:优秀率:15%;合格率:55%。

四、教材分析

第十六章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。

第十七章勾股定理:本章主要探索直角三角形的三边关系,学习勾股定理及勾股定理的.逆定理,学会利用三边关系判断一个三角形是否为直角三角形。教学重点:勾股定理及勾股定理的逆定理的理解与应用。教学难点:探索直角三角形三边关系时,理解勾股定理及勾股定理的逆定理。

第十八章平行四边形:本章主要探究两类特殊的四边形的性质与判定,即平行四边形和梯形有关的性质与判定。教学重点:平行四边形的定义、性质和判定;特殊平行四边形(矩形、菱形、正方形)的性质与判定;梯形及特殊梯形(等腰梯形)的性质与判定。教学难点:平行四边形的性质与判定及其应用;特殊平行四边形的性质与判定及其应用;等腰梯形的性质与判定及其应用。

第十九章一次函数:本章主要学习一次函数及其三种表达方式,包括正比例函数、一次函数的概念、图象、性质和应用。学会用函数的观点认识一元一次方程、一元一次不等式及二元一次方程组。本章重点内容是正比例函数、一次函数的概念、图象和性质。教学难点是培养学生初步形成数形结合的思维模式。第二十章数据的分析:本章主要学平均数、中位数和众数,理解它们所反映出的数据的本质。教学重点:求平均数、中位数与方差;理解平均数、中位数和众数所表达的含义;区别算术平均数与加权平均数之间的联系和区别。教学难点:求加权平均数、中位数和方差;根据平均数、加权平均数、中位数、众数、极差和方差对数据作出比较准确的描述。

五、教学措施

1、课前作好充分准备,备好教材,备好学生。精心设计探究问题,认真讲解方法概念,深入分析思维模式,做到重点突出,难点透彻。

2、加强课后总结和对学生的课后辅导。认真总结每一堂课的成败得失,深入学生了解课堂教学的实际效果,耐心辅导存在问题的学生。

3、搞好单元测试及试卷分析,针对试卷中存在的问题,及时采取行之有效的补救措施,切实解决学生数学学习中存在的困惑。

2024八年级人教数学教案 篇4

本学期我担任八年级两个班级的数学教学任务,根据学校的工作计划,结合我校八年级学生数学基础较差,两级分化严重,学生灵活应用知识分析问题和解决问题的能力都很差的实际情况,制定本学期教学计划如下:

一、本学期的教学目标

通过本学期的教学,使学生掌握二次根式的加、减、乘、除的运算法则和运算方法;掌握反一次函数的概念和图象性质;勾股定理及其逆定理;各种特殊四边形的性质和判定方法;使学生经历知识的探索过程,体会知识的发生、发展过程,在知识的学习过程中,逐步掌握数学思想方法,并得到兴趣的培养和受到思想教育,同时提高学生的分析问题和解决问题的能力;进一步建立几何图形的空间观念;初步了解统计的思想,数形结合的思想,方程的思想和分类讨论的思想等。

二、教材分析

本学期所授的内容包括二次根式、勾股定理、平行四边形、一次函数、数据的分析五章。每章都是一个单独学习的主题,章与章之间的联系不大,但本学期所学的知识与小学、七年级和八年级上学期所学知识有一定的联系,而且是以后学习的基础,因此知识联系的跨度比较大,这就需要学生对所学知识要经常温习,以避免遗忘。所以教学时,对每一章的教学目标和重点难点都要明确,以圆满完成每一章节的教学任务。

三、学情分析

八年级学生虽然掌握了一定的基础知识,并且有了一定的能力,但是我校学生的实际基础较差,特别是在能力方面欠缺。另外学生在学习上缺乏主动性,不能积极主动地按老师的要求先预习,课后温习,认真完成作业,这样就造成了课堂检验学生的学习效果比较理想,但是第二天交上来的作业效果不理想。

四、教学措施

1、本学期教学工作重点是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。

2、课前备课。课前认真备课,研究教材、课程标准,把握教材的重点和难点,明确本章本节在整体中所处的地位,分析理清知识间的内在联系和规律,并全面深入地掌握教材内容。根据学生实际状况、按照课程标准的要求完成每一节的教学任务。

3、备学生,深入了解学生思想实际和知识能力水平,充分估计学生学习新知识时可能出现的问题,遵照学生的认知规律,精心设计教学程序和教学方法。

4、认真考虑如何帮助学生明确学习目的,端正学习态度,激发调动学习兴趣和积极性,帮助他们解决学习中的困难。研究科学的学习方法,培养学生形成良好的学习习惯。了解学生的学习状况,根据学生的学习情况,选择适当的教学方法,使学生理解掌握基础知识。

5、备教法,依据课程标准,教材要求和学生实际,设计出突出重,突破难点,解决关键的整体优化教学方法。教学方法的运用要切合学生的实际,要有利于培养学生的良好学习习惯,有利于调动不同层次的学生的学习积极性,有利于培养学生的自学能力,思维能力和解决问题的能力。

6、备作业,根据学生的不同学习状况,给不同的学生布置不同的作业。作业数量适中,及时批改作业,对作业中出现的问题要跟踪矫正,认真讲评,提高练习的质量,作业量不超过二十分钟。

7、挖掘教材中固有的思想教育因素,培养学生的爱国主义思想和民族自豪感,调动学生学习数学的积极性。

8、课堂教学。教学要面向全体学生,认真组织教学,通过课堂教学促进学生全面和谐地发展。建立师生交往,共同发展的民主、平等的'新型师生关系。改变传统的教学方式。讲究课堂教学艺术,做到重点突出,难点分,疑点抓准,语言简洁生动,板书条理分明。充分利用课堂教学,创设学生感兴趣的情境,调动学生的学习兴趣。与实际生活相联系,使学生感受到数学与生活的密切联系,体会到学习数学的重要性。教学中以学生为主体,由浅入深,层层深入。另外,要关注学困生,多到他们身边站一站,了解他们的学习状况,对于他们学习中的困难及时帮助其解决,对于一些简单的问题,多给他们机会,增强他们的学习信心。这样创设一个和谐民主的课堂气氛,使学生积极踊跃地参与到教学中来,充分体现以学生为主体的课堂教学。

9、提高教学质量的措施。

(1)通过创设问题情境和身边的数学,调动学生的学习兴趣和感受学习数学的重要性,使学生了解数学来源于生活,又应用于生活,与我们的生活生产息息相关,从而使学生愿意学习数学.

(2)采取多种教学方法,如多让学生动手操作,多设问,多启发,多观察等。增加学习主动性和学习兴趣,体现学生的主体性。

(3)为了提高课堂教学效率,对于一些教学内容较少的课,可要求学生课前预习,课堂上老师精讲,在完成必要的练习题的情况下,可抽出十分到十五分钟的时间进行课堂检测,当堂检验学生对知识的掌握情况,然后有针对性地进行点评,以提高学生的学习积极性。

(4)课堂教学,做到精讲细练。即:教学语言简单明了,让每一个学生都能听懂老师的话,多让学生自己动手操作,动眼观察,动脑思考,做到手勤、眼勤、脑勤。

(5)关注学困生,不歧视学困生,尊重、关心、爱护他们,使他们感到老师和同学对他们的关心。设置一些简单的问题,由他们回答,增强他们的自信心。利用中午休息时间或第八节自习时间为他们辅导,尽量使他们跟上教学进度。另外,对他们要有耐心,对于他们提出的问题,耐心解答。

2024八年级人教数学教案 篇5

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18。1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

三、教学问题诊断分析

学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

四、教学支持条件分析

根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式。在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程。

五、教学过程设计

(一)创设情境,导入新课。

问题1:请同学们欣赏2002年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

【设计意图】以国际数学家大会——————“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的'好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识。

方案1:如果学生能够说出勾股定理的相关知识,则直接

进入下一环节的学习。

方案2:如果学生有困难,则安排学生自学教材,再发表意见。

学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等

【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

(二)观察演算,合作探究,初具概念

问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)

教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

问题5:你是怎样演算的?

教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。

视学生的学习情况确定下步的教学:

方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。

方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。

【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。

问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。

学生描述,教师板书。

【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察———探究———整理————归纳的数学方法,体验学习的成功。

(三)引导实验,探究论证,形成体系。

问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。

学生或小组间进行合作实验,共同协作探究;教师巡视指导。

【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

问题9:教师选取代表性的拼接方法,全班展示。

【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

(四)归纳提高,巩固运用,形成能力。

问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

问题11:完成以下练习题

教材69页第1题、

学生独立完成;教师巡视指导,板书得数,介绍勾股数。

【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

(五)归纳小结,反思提高

问题12:通过本节课的学习,你有哪些收获?

学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。

2024八年级人教数学教案 篇6

一、指导思想:

以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;

二、教材目标及要求:

1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。

2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。

3勾股定理:会用勾股定理和逆定理解决实际问题。

4、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

5、数据描述

三、教学措施:

1、由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

2、重视改进教学方法,坚持“双向五环”教学模式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。

3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。

4、课后辅导实行流动分层。

四、课时安排。

推荐阅读

小编精心推荐

八年级教案 | 八年级地理教案 | 八年级力教案 | 八年级
上一篇:2024国庆国旗下讲话党旗 下一篇:辅警党员谈心谈话模板范文(集锦九篇)
back_img
推荐标签