【#实用文# #完全平方公式课件分享8篇#】作为一名人民教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。如何把教案做到重点突出呢?下面是小编为大家收集的完全平方公式课件教案,仅供参考,欢迎大家阅读。
完全平方公式课件 篇1
一、学习目标
1.会运用完全平方公式进行一些数的简便运算
二、学习重点
运用完全平方公式进行一些数的简便运算
三、学习难点
灵活运用平方差和完全平方公式进行整式的简便运算
四、学习设计
(一)预习准备
(1)预习书p26-27
(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[
(3)预习作业:1.利用完全平方公式计算
(1)(2) (3)(4)
2.计算:
(1) (2)
(二)学习过程
平方差公式和完全平方公式的逆运用
由 反之
反之
1、填空:
(1)(2)(3)
(4)(5)
(6)
(7)若,则k=
(8)若是完全平方式,则k=
例1计算:1. 2.
现在我们从几何角度去解释完全平方公式:
从图(1)中可以看出大正方形的边长是a+b,它是由两个小正方形和两个矩形组成,所以
大正方形的面积等于这四个图形的面积之和.
则S= =
即:
如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形HCGM的边长是b,其面积就是 ;正方形AFME的边长是 ,所以它的'面积是 .从图中可以看出正方形AEMF的面积等于正方形ABCD的面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2= .这也正好符合完全平方公式.
例2.计算:
(1) (2)
变式训练:
(1) (2)
(3) (4)(x+5)2–(x-2)(x-3)
(5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)
拓展:1、(1)已知,则=
(2)已知,求________,________
(3)不论为任意有理数,的值总是()
A.负数B.零C.正数D.不小于2
2、(1)已知,求和的值。
(2)已知,求的值。
(3).已知,求的值
回顾小结
1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。
2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。
完全平方公式课件 篇2
教学目标
1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的.因式分解。
2、掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)
教学方法:对比发现法课型新授课教具投影仪
教师活动:学生活动
复习巩固:上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87—88页,看看你能有什么发现?
新课讲解:
(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2
a2-8a+16=a2-2×4a+42=(a-4)2
(要强调注意符号)
首先我们来试一试:(投影:牛刀小试)
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1
(3)(m+n)2-4(m+n)+4
(教师强调步骤的重要性,注意发现学生易错点,及时纠正)
2.把81x4-72x2y2+16y4分解因式
(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)
将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。
练习:第88页练一练第1、2题
完全平方公式课件 篇3
教学目标
1。使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;
2。理解完全平方式的意义和特点,培养学生的判断能力。
3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.
4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。
教学重点和难点
重点:运用完全平方式分解因式。
难点:灵活运用完全平方公式公解因式。
教学过程设计
一、复习
1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。
2。把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4。
解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
(2) 16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n)。
问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式。
请写出完全平方公式。
完全平方公式是:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。
这节课我们就来讨论如何运用完全平方公式把多项式因式分解。
二、新课
和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到
a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。
问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。
问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9; (2)x2+xy+y2;
(3)25x4-10x2+1; (4)16a2+1。
答:(1)式是完全平方式。因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) 。
(2)不是完全平方式。因为第三部分必须是2xy。
(3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以
25x -10x +1=(5x-1) 。
(4)不是完全平方式。因为缺第三部分。
请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y。
例1 把25x4+10x2+1分解因式。
分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍。所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式。
解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。
例2 把1- m+ 分解因式。
问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的'积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。
解法1 1- m+ =1-2·1· +( )2=(1- )2。
解法2 先提出 ,则
1- m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2。
三、课堂练习(投影)
1。填空:
(1)x2-10x+( )2=( )2;
(2)9x2+( )+4y2=( )2;
(3)1-( )+m2/9=( )2。
2。下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多
项式改变为完全平方式。
(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;
(4)9m2+12m+4; (5)1-a+a2/4。
3。把下列各式分解因式:
(1)a2-24a+144; (2)4a2b2+4ab+1;
(3)19x2+2xy+9y2; (4)14a2-ab+b2。
答案:
1。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。
2。(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。
(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式。
(3)是完全平方式,a2-4ab+4b2=(a-2b)2。
(4)是完全平方式,9m2+12m+4=(3m+2) 2。
(5)是完全平方式,1-a+a2/4=(1-a2)2。
3。(1)(a-12) 2; (2)(2ab+1) 2;
(3)(13x+3y) 2; (4)(12a-b)2。
四、小结
运用完全平方公式把一个多项式分解因式的主要思路与方法是:
1。首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解。有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解。
2。在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2。
五、作业
把下列各式分解因式:
1。(1)a2+8a+16; (2)1-4t+4t2;
(3)m2-14m+49; (4)y2+y+1/4。
2。(1)25m2-80m+64; (2)4a2+36a+81;
(3)4p2-20pq+25q2; (4)16-8xy+x2y2;
(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。
3。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;
4。(1) x -4x; (2)a5+a4+ a3。
答案:
1。(1)(a+4)2; (2)(1-2t)2;
(3)(m-7) 2; (4)(y+12)2。
2。(1)(5m-8) 2; (2)(2a+9) 2;
(3)(2p-5q) 2; (4)(4-xy) 2;
(5)(ab-2) 2; (6)(5a2-4b2) 2。
3。(1)(mn-1) 2; (2)7am-1(a-1) 2。
4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。
课堂教学设计说明
1。利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
2。本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法。在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点。例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法。
完全平方公式课件 篇4
课题教案:
完全平方公式
学科:
数学
年级:
七年级
1内容本节课的主题:
通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
1.1以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。使学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
1.2用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。
2教学目标
2.1知识目标:会推导完全平方公式,并能运用公式进行简单的计算;了解(a+b)2=a2+2ab+b2的几何背景。
2.2技能目标:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。
2.3情感与态度目标:通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
3教学重点
完全平方公式的准确应用。
4教学难点
掌握公式中字母表达式的意义及灵活运用公式进行计算。
5教育理念和教学方式
5.1教学是师生交往、积极互动、共同发展的过程。教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的`结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,通过恰当的教学方式引导学生学会自我调适,自我选择。
学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
5.2采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。
6具体教学过程设计如下:
6.1提出问题:[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?
(x+3)2=,(x-3)2=,这些式子的左边和右边有什么规律?再做几个试一试:
(2m+3n)2=,(2m-3n)2=
6.2分析问题
6.2.1[学生回答]分组交流、讨论多项式的结构特点
(1)原式的特点。两数和的平方。
(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
6.2.2[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
6.2.3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
6.3运用公式,解决问题
6.3.1口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=,(m-n)2=,(-m+n)2=,(-m-n)2=,6.3.2小试牛刀
①(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
6.4学生小结:你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
6.5[作业]P34随堂练习P36习题
完全平方公式课件 篇5
教学目标
1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.
2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.
3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.
教学重难点
教学重点:
1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.
2、会运用公式进行简单的计算.
教学难点:
1、完全平方公式的推导及其几何解释.
2、完全平方公式的结构特点及其应用.
教学工具
课件
教学过程
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点.
问题2:平方差公式是如何推导出来的'?
问题3:平方差公式可用来解决什么问题,举例说明.
问题4:想一想、做一做,说出下列各式的结果.
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)
(1)四块面积分别为:
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,S=;
②部分看:四块面积的和,S=.
总结:通过以上探索你发现了什么?
问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?
问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述.
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.
总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.
问题:
①这两个公式有何相同点与不同点?
②你能用自己的语言叙述这两个公式吗?
语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果.
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式.
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误.也不要与平方差公式混在一起.
七、作业设置
完全平方公式课件 篇6
一、教学目标
【知识与技能】
能够运用完全平方公式对简单的多项式进行因式分解
【过程与方法】
通过对实例的探究与合作,锻炼公式推导与总结能力
【情感态度与价值观】
在合作探究中,体会到数学学习的乐趣,加强交流合作能力
二、教学重难点
【教学重点】
完全平方公式
【教学难点】
完全平方公式的推导过程与应用
三、教学过程
(1)情景设置,设疑导入
老师展示正方形广场图片,并告知已知条件:边长为a的正方形广场两个邻边有5米宽的道路,形成一个较大的正方形广场,尝试用不同方法求解整个广场(包括道路)的大小。
预设:①(a+5)(看作一个整体)
②a+5+2×5×a(看作几个部分)
(2)师生合作,新课教学
由学生板书得出等式:(a+5)=a+5+2×5×a,提出问题:如果将5米宽,换成b米宽又能得到什么呢?(小组交流讨论)
得出结论:
进行证明:
得到完全平方公式,记忆口诀:首平方,尾平方,首尾两倍放中央。
(3)巩固提升,深化新知
(4)小结作业,及时反思
小结:请同学们谈一谈今天这节课的收获:
1.学会了完全平方公式
2.学会了简易计算平方式的能力
3.提高了与同学们合作探究的.能力,体会到了合作的乐趣
作业:
公式拓展:a+b=(a+b)+()
91=()
及时复习巩固完全平方公式,并在生活中找一找完全平方公式的运用
完全平方公式课件 篇7
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
学生讨论,教师归纳,得出结果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推广:结果中有两个数的`平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2. 请点击下载Word版完整教案:新人教版八年级数学上册《完全平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!
完全平方公式课件 篇8
一、教材分析
完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。
本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。
二、学情分析
多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。
三、教学目标
知识与技能
利用添括号法则灵活应用乘法公式。
过程与方法
利用去括号法则得到添括号法则,培养学生的`逆向思维能力。
情感态度与价值观
鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。
四、教学重点难点
教学重点
理解添括号法则,进一步熟悉乘法公式的合理利用.
教学难点
在多项式与多项式的乘法中适当添括号达到应用公式的目的.
五、教学方法
思考分析、归纳总结、练习、应用拓展等环节。
六、教学过程设计
师生活动
设计意图
一、提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.
也就是说,遇“加”不变,遇“减”都变.
二、探究新知
把上述四个等式的左右两边反过来,又会得到什么结果呢?
(1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)
(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)
左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?
(学生分组讨论,最后总结)
添括号法则是:
添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
也是:遇“加”不变,遇“减”都变.
请同学们利用添括号法则完成下列练习:
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
判断下列运算是否正确.
(1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.
三、新知运用
有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
四.随堂练习:
1.课本P111练习
2.《学案》101页——巩固训练
五、课堂小结:
通过本节课的学习,你有何收获和体会?
我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.
我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.
六、检测作业
习题14.2: 必做题: 3 、4 、5题
选做题:7题
知识梳理,教学导入,激发学生的学习热情
交流合作,探究新知,以问题驱动,层层深入。
归纳总结,提升课堂效果。
作业检测,检测目标的达成情况。