back_img
好工具 >范文 >实用文

2024任意角课件(范文八篇)

2024-03-07 09:21:06 任意课件

【#实用文# #2024任意角课件(范文八篇)#】每个老师在上课前会带上自己教案课件,因此老师会仔细规划每份教案课件重点难点。写好教案课件,可以避免重中之重被遗漏,写教案课件要具备哪些步骤?编辑为您精心准备了一份“任意角课件”相关资料,如果我的建议对你很有用请务必将它收藏起来!

任意角课件【篇1】

【教学目标:】

1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.

2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)

【教学重点:】

任意角的三角函数的定义.

【教学难点:】

任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.

【教学用具:】

直尺、圆规、投影仪.

【教学步骤:】

1.设置情境

角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.

2.探索研究

(1)复习回忆锐角三角函数

我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.

(2)任意角的三角函数定义

如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .

定义:①比值 叫做 的正弦,记作 ,即 .

②比值 叫做 的余弦,记作 ,即 .

图1

③比值 叫做 的正切,记作 ,即 .

同时提供显示任意角的三角函数所在象限的课件

提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?

利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关.

请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.

④比值 叫做 的余切,记作 ,则 .

⑤比值 叫做 的正割,记作 ,则 .

⑥比值 叫做 的余割,记作 ,则 .

可以看出:当 时, 的终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.

(3)三角函数是以实数为自变量的函数

对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.

即:实数→角(其弧度数等于这个实数)→三角函数值(实数)

(4)三角函数的一种几何表示

利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.

图3

设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:

这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.

(5)例题讲评

任意角课件【篇2】

任意角教学设计

一.内容和内容解析

三角函数是基本初等函数,它是描述周期现象的重要数学模型。角的概念的推广正是这一思想的体现之一,是初中相关知识的自然延续。为进一步研究角的和、差、倍、半关系提供了条件,也为今后学习解析几何、复数等相关知识提供有利的工具。本节课是三角函数的第一节课,学生正确的理解和掌握角的概念的推广尤为重要。本节课的教学重点是:理解正角、负角和零角和象限角的定义,掌握终边相同角、象限角的表示方法及判断。二.目标和目标解析

1.结合实例体验角的概念推广的必要性;从运动的观点出发,进行角的概念推广,理解并掌握正角、负角、零角的定义;

2.能用集合和数学符号表示终边相同的角,即掌握所有与α角终边相同的角(包括α角)的表示方法;

3.能建立适当的坐标系来讨论任意角,理解象限角、坐标轴上的角的概念,并能用集合和数学符号表示;

4.在角的概念的推广的过程中,树立运动变化观点,学会运用运动变化的观点认识事物;

5.通过正角、负角、零角与正数、负数、零的类比,培养学生的类比思维能力; 6.通过画图和判断角的象限,培养学生数形结合的思想方法; 三.教学问题诊断分析

本节课的教学难点是:把终边相同的角、象限角用集合和数学符号语言正确地表示出来。1.学生在理解终边相同的角的表示方法上,会出现障碍,其原因是:刚刚将角的概念推广,还不是很适应终边相同的角的“周而复始”这个现象的本质;

2.学生在学习了教材例1后,做p6第4题,仍然感到困难,其原因是:当角为负角时,在00~3600范围内找出终边相同的角,不知怎样计算,教学时应给学生介绍计算方法; 3.学生在学习了象限角的概念后,怎样用集合和数学符号语言正确地表示象限角(如:第一象限角),会出现障碍,其原因是:对第一象限角是有无数个区间构成,它们的终边是“周而复始”的现象的刻画还不了解,教师要进一步的解释k·3600的运用特点。四.学习行为分析

1.初中学生已经接触到角的定义,角的范围仅限于00~3600。结合实际生活中的例子,由教材的“思考”问题出发,引发学生的的认知冲突,激发学生的求知欲望,让学生体会角的推广的必要性。让学生在好奇心的推动下,充分的调动学生的自主探究的内在动力,利用类比和数形结合的思想,借助信息技术工具(如:几何画板),让学生在动态的过程中体会“既要知道旋转量,又要知道旋转方向”才能准确的刻画角的形成过程的道理。学习本节角的概念的推广困难不大。

2.“终边相同的角之间的关系”的学习,可以从特例出发,通过填空的方式,使学生经历由具体数值到一般的k值的抽象过程,学生易于接受。这里可以借助信息技术工具(如:几何画板),建立适当的直角坐标系,画出任意角,并测出角的大小,同时旋转角的终边,让学生观察角的变化规律,从而将数与形联系起来,使角的几何表示和集合表示相集合。

五.教学支持条件分析

借助信息技术工具(如:几何画板),制作课件。【可参考人民教育出版社配套《教师用书》后的光盘中数学4的资源】

1.角的推广在角的旋转量、旋转方向上给学生以动态的体会;

2.动态的表现角的终边旋转过程,有利于学生观察到角的变化与终边的位置关系,从特殊到一般,让学生发现并验证终边相同的角的表示方法。六.教学过程设计 1.教学程序与环节设计

创设情境

↓ 组织探究

↓ 例题分析

↓ 尝试练习

↓ ——

——

——

——

实际问题出发,激起学生的求知欲望。角的概念的推广,象限角的定义、终边相同的角的表示方法。

通过例题,进一步理解任意角、象限角和终边相同的角。

象限角的判断、终边相同的角的表示方法。让学生复习本节主要内容,完善学生的认知结构,体会数学思想方法。

作业与反馈,关注学生的能力差异。在实际生活中体验数学的应用价值。小结与反思 ——

↓ 评价设计

↓ 课外活动

——

——

2.教学过程与操作设计:

环节 创 教学内容设计

设计意图 提出问题,引发学生的认识冲突,说明角的概念扩展的必要性

师生双边互动

学生:针对上述问题,组织学生进行讨论。学生容易回答前面一个问题,但在回答后面一个问题是会发现问题,从而引起认知冲突。思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表 快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了设

多少度?

教师:[取出一个钟表,实际操作]我们发现,校正过程中分针需要顺时针或逆时针旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于00~3600之间,这正是我们这节课要研究的主要内容——任意角.1.任意角概念的引入

回顾已有知识 教师:提出问题

学生:回答问题

教师:[展示课件]角可以看成平面内一条射线绕着端点从一个位

置旋转到另一个位置所成的图⑴.问题:过去我们是如何定义一 个角的?角的范围是什么?

组 ⑵.举出不在织

⑷.给出任意角的定义 例,并加以说明。

⑶.你认为刻画这些角的关键是什么?

让学生认识到的角的实

举例,再说明所举例的结合具体的实形.学生:

00角为什么不在0~360。例,感受角的概念推广的必要性

教师:提供教材中的几个例子。

学生:组织讨论

刻画这些角不教师:引导学生从旋转量、旋转仅要用旋转量,还要用旋转方向。

教师:引导学生通过类比正数、负数和零,定义角的正角、负角

利用新概念重和零角的概念。

新认识问题。

学生:观察图1.1-3,进一步认

方向这两个方面进行思考。

2.象限角

通过尝试探

识正角、负角。

教师:让学生利用任意角的定义,究,由学生感回答本节开始的“思考”中的表受没有统一标的校正问题。

学生:画图探究,讨论、交流,不难给出合理的放法。

(先让学生以同一条射线为始边作出下列角:210?/span>,-150?/span>,-660?/span>)

⑵.给出象限角的概念

3.终边相同的角

探究:将角按照上述的方法放在直

探究终边相同的角之间的关

⑴.问题:如果把角放在直角坐标准时,角的表系中,那么怎样放比较方便、合示不方便。理?

系,理解并掌教师:在总结分析合理放法的基握改关系。础上,给出象限角的概念,并说

从具体问题入手,了解终边相同的角的关系。

然后通过具体例子使学生直接感受象限角的概念。

学生:思考每组角的数量关系。教师:引导学生用含有其中一个明在同一坐标系下讨论角的好处。

角坐标系中后,给定一个角,就有 唯一的一条终边与之对应。反之,对于直角坐标系内任意一条射线从具体到一ob(如图1.1—5),以它为终边的般,认识终边角的关系式表示另外的角。角是否唯一?如果不唯一,那么终相同的角的关边相同的角有什么关系? ⑴.在直角坐标系内标出

系及其表示。由几何位置“终边相同”210?/span>,-150?/span>角的终探讨其代数特

教师:[展示课件]让学生利用计算机在旋转终边的过程中发现

“终边相同”的角的关系,并利边,你有什么发现?它们有怎样的征的“统一”。数量关系?328?/span>、-32?/span>、-392?/span>角的终边呢?

⑵.直角坐标系内,角α对应了唯一一条射线(终边),那么是否存在与角α终边相同的角?如果存在,如何表示? 4.练习

教科书p6练习第1~2题 例1.在00~3600范围内,找出与例-950012′角终边相同的角,并判定 题

分 它是第几象限角.例2.写出终边在y轴上的角的集合.例3.写出终边直线在y=x上的角

通过例题,进一步理解任意角、象限角和终边相同的角。

用集合表示出来。

学生:口答

教师:通过提问的形式向学生传递答案。

教师:分析、板书例1。

学生:自学例2。

教师:指出这两个集合求并集的关键是把2700改写成900+1800,然后重新组合。

师生:共同完成例3,注意k的正确取值是关键。析 的集合s,并把s中适合不等式-3600≤α≤7200的元素β写出来.1.教科书p6练习第3~5题 尝 2.补充:

学生:尝试独立完成练习

通过练习,掌试 ①时针经过3小时20分,则时针握象限角的判教师:巡视,个别辅导

断、终边相同转过的角度为,分针转过的练 的角的表示方学生:回答结果

角度为。

法。

习教师:给出评价

②若角α是第二象限角,则180啊?i>α是第 象限角。问题:1.你知道角是如何推广的小 吗?象限角是如何定义的呢?

让学生复习本学生:回答,讨论交流,补充

结 2.你掌握了与角α终边相同的角节主要内容,的集合的表示方法吗?

完善学生的认与

知结构,体会3.本节课你体会到哪些数学思想教师:归纳总结,突出重点知识;

数学思想方反 方法?

解决学生的疑惑点。法。

思 4.在本节课的学习过程中,还有那些不太明白的地方? 评 作业与反馈:

教科书p10习题1.1a组第1~3 1.题 价

2.选做题:

①.写出终边在坐标轴上的角的集设

②写出终边在y= 合。

3.【发展要求】

上的角的集能用集合和数

2.判断角是第几象限角;

1.终边相同角的表示; 关注学生的能力差异。

计 合s,并把s中适合不等式-3600≤学语言表示终α

件的角;

③若α、β的终边关于x轴对称,则α与β的关系是 ;若α与β的终边关于y轴对称,则α与β的关系是 ;若α、β的终边关于原点对称,则α与β的关系是。

在实际生活中1.你能举出一些日常生活中的“大于3600的角和负角”的例子吗?与课

同桌交流,并熟练掌握它们的表

体验数学的应用价值

外 示,进一步理解具有相同终边的角的特点. 活

2.【探究学习】如果角α是第二动

象限角,那么 在哪里?

探究学习,激

等角的终边落发学习兴趣。

任意角课件【篇3】

教学目的:

知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.

2.理解握各种三角函数在各象限内的符号.?

3.理解终边相同的角的同一三角函数值相等.

能力目标:

1.掌握三角函数定义. 三角函数的定义域,三角函数线.

2.掌握各种三角函数在各象限内的符号.?

3.掌握终边相同的角的同一三角函数值相等.

授课类型:复习课

教学模式:讲练结合

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.

2.确定下列各式的符号

(1)sin100°cs240° (2)sin5+tan5

3. .x取什么值时, 有意义?

4.若三角形的两内角,满足sincs 0,则此三角形必为……( )

A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能

5.若是第三象限角,则下列各式中不成立的是………………( )

A:sin+cs 0 B:tansin 0

C:csct 0 D:ctcsc 0

6.已知是第三象限角且,问是第几象限角?

二、讲解新课:

1、求下列函数的定义域:

(1) ; (2)

2、已知 ,则为第几象限角?

3、(1) 若θ在第四象限,试判断sin(csθ)cs(sinθ)的符号;

(2)若tan(csθ)ct(sinθ)>0,试指出θ所在的象限,并用图形表示出 的取值范围.

4、求证角θ为第三象限角的充分必要条件是

证明:必要性:∵θ是第三象限角,?

充分性:∵sinθ<0,

∴θ是第三或第四象限角或终边在y轴的非正半轴上

∵tanθ>0,∴θ是第一或第三象限角.?

∵sinθ<0,tanθ>0都成立.?

∴θ为第三象限角.?

5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.

三、巩固与练习

1 求函数 的值域

2 设是第二象限的角,且 的范围.

四、小结:

五、课后作业:

1、利用单位圆中的三角函数线,确定下列各角的取值范围:

(1) sinα  2、角α的终边上的点P与A(a,b)关于x轴对称 ,角β的终边上的点Q与A关于直线=x对称.求sinαescβ+tanαctβ+secαcscβ的值.

任意角课件【篇4】

1.1.1 任意角教学设计

设计教师 营迎

教学目标

1.结合实例体验角的概念推广的必要性;能建立适当的坐标系来论任意角,并能熟运用集合和数学符号表示终边相同的角。

2.培养学生的类比思维能力和形象思维能力。

3.通过任意角概念的学习,体验角的概念扩展的必要性,促进学生对数学知识形成过程的认识,用数学知识认识世界,从而培养学生善于思考,勤于动手的良好品质。教学重难点

重点:将0~360的角的概念推广到任意角。难点:角的概念的推广,终边相同角的表示。教学方法

本节教学方法采用教师引导下的讨论法,通过多媒体课件在教师的带领下,学生发现就概念、就方法的不足之处,进而探索新的方法,形成新的概念,突出数形结合思想与方法在概念形成与形式化、数量化过程中的作用,是一节体现数学的逻辑性、思想性比较强的 教学过程

00一.创设情境(引入):(互动)请两名同学起立,做由“面向黑板转体背向黑板”的动作,在这个过程中他们各转体了多少度?(引导学生关注旋转的方向和旋转的量着两个要点)。我们会发现角已不仅仅局限于0~360之间,这正是我们这节课要研究的主要内容———任意角。

二.探究新知,建立概念(1)任意角概念的引入

问题1:过去我们是如何定义一个角的?角的范围是什么?

师生活动:教师:[展示课件]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.问题2:你能举出不在0~360的角的实例,并加以说明吗

学生:举例,再说明所举例的角为什么不在0~360。教师:提供教材中的几个例子。(2)概念讲解

1.角的概念的推广:

(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角α。其中射线OA叫角α的始边,射线OB叫角α的终边,O叫角α的顶点。2.正角、负角、零角概念(类比正负数的规定)

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,如果一条射

00

0

四.练习

1.与-1778°的终边相同且绝对值最小的角是___________。2.A={小于90°的角},B={第一象限的角}则A∩B等于()A.{锐角} C.{第一象限的角} B.{小于90°的角} D.以上说法都不对 五.小结

1.任意角的概念 2.象限角 3.终边相同的角 4.象限角的判断

六.思考 终边在第一、二、三、四象限的角的集合分别如何表示?

七.作业:红对勾训练1课时 八.板书设计:略 九.教学反思:

任意角课件【篇5】

教学内容:人教版八册P82

教学目标:

1、通过动手操作和观察比较,使学生知道三角形任意两边的和大于第三边;

2、能根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括的能力以及动手操作的能力;

3、让学生积极参与探究活动,获得成功体验,产生学习数学的兴趣。

重点:三角形三边之间的关系

难点:探索发现三角形三边之间的关系。

教学准备:小棒、课件

教学过程:

一、引入

1、师:同学们,我们已经认识了三角形,你能告诉大家什么是三角形吗?

生:由三条线段围成的图形叫做三角形。

师:不错,那么三条线段就一定能围成三角形吗?能(不能)

师:那我们就来围围看吧。谁愿意上来围?(两生上台演示--评析)

2、师:看来,有的三条线段能围成三角形,有的三条线段不能围成三角形。那下面我们大家都来围围三角形,好不好?

二、三角形三边关系的探究

(一)围三角形,创建研究素材

1、师:(1)同桌两人合作,每次从5根小棒中任取3根来围三角形,将围的情况记录在白纸上。要求分工合作:一人围,一人记录。

2、学生操作(教师指导)

3、反馈:学生汇报能和不能围成的情况(教师板书记录)

师:还有吗?情况不少,我们就用省略号来表示吧!

[检测错误情况--对同学们汇报上来的能和不能围成三角形的各种情况,对照自己的记录,看看谁还有意见?]

(二)思考讨论,发现规律

1、师:同学们,能不能围成三角形看来跟三条线段的什么有关?(长度),那么究竟怎么样的三条线段不能围成三角形?怎么样的三条线段又能围成三角形,下面我们先通过自己观察、思考,再与同桌进行讨论来发现其中的奥秘。

2、学生讨论(教师参与)

3、反馈

层次1:

师:下面我们先来看怎样的三条线段不能围成三角形?

(1)生:我们发现两边的和小于(等于)第三边就不能围成三角形。比如2+2小于5,就不能围成三角形。(师板书:2+2<5,)

师:真的吗?来围给我们看看?(生上台围,展示)

(2)师:是不是所有的情况都是小于呢?

生:我们发现两边的和等于第三边也不能围成三角形。3+3等于6,就不能围成三角形。(师板书:3+3=6)

师:也请你围给我们看看?(生展示)

检验其余记录下来的情况。(师生齐算,板书算式)

层次2:

(1)列举发现

师指着板书:这些能围成三角形的三条边又有怎样的关系呢?

生:我们发现两条边的和大于第三条边就能围成三角形。如2+3>4,这样就能围成三角形。(师板书)

师:谁有不同发现?

生:我们认为必须每两条边相加和大于第三条边才能围成三角形。比如2+3>4、2+4>3、4+3>2(师板书)

哪些组还有不同发现?

生:我们认为最短的两边的和大于第三条边就能围成三角形。如只要2+3>4,就能围成三角形。

师:还有吗?

(2)辨析

师:各自说说理由吧!

生:因为如果只考虑一种情况是不行的,有时两条线段的和大于第三条线段,也不能围成三角形。

师:举个例子呢?引导学生引用不能的情况来反证。

生:比如在刚才不能围成的情况中:3+4<8、8+4>3、8+3>4,出现了两个大于的情况,但只要存在两边和小于(等于)第三边的情况,也不能围成三角形。所以只考虑一种情况是不行的。

师:那么为什么最短的两条线段的和大于最长的线段就能围成三角形呢?

生:因为最短的两条线段的和大于最长的线段,那么另外两组边加起来肯定比这一组长。意思是如果2+3>4,那么2+4肯定>3,4+3肯定>2。

(师用实物在黑板上演示)

小结:因为只要最短两边的和大于了最长的边,那么其他任意两边的和都会大于第三条边的。所以你们两组的观点实际上是一致的。这也就是三角形三边关系的一个

重要结论:三角形任意两边的和大于第三边

三、应用

1、下面哪几组的三条线段能围成三角形?

(3、4、5)(2、3、7)(3、3、3)(3、3、6)

2、根据3、3、6这题延伸。要求:拿掉一根3厘米的线段,再重新配一根其它长度的线段,使它们能围成三角形。(取整厘米数)

如果拿掉的是6分米,那么配上的一根最短应该是几?最长可以是几?

3、机动:16分米长的小棒如果要围成一个三角形,我们必须将它截成3段,其中最长的一边最多可以截几分米?为什么?具体可以怎样截,你有没有方法可以将所有的情况不遗漏也不重复的列举出来?(要求边取整分米数)

四、总结

师:这节课你有哪些收获?关于三角形三边关系还有值得我们探索的地方,比如三角形任意两边的差与第三边有怎样的关系?有兴趣的同学课外可以自己进行探索。

(另外还有一种思路:先告诉学生结论,然后通过验证来检查结论是否正确)

任意角课件【篇6】

教学过程:

一、创设情境

1.出示:课本82页例3情境图。

(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?

(2)在这几条路线中哪条最近?为什么?

2.大家都认为走中间这条路最近,这是什么原因呢?

请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那么走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,根据刚才大家的判断,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?

我们来做个实验。

二、实验探究

1.实验1:用三根小棒摆一个三角形。

在每个小组的桌上都有5根小棒,请大家随意拿三根来摆三角形,看看有什么发现?

学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。

2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。

(1)每个小组用以下四组小棒来摆三角形,并作好记录。

(2)观察上表结果,说一说不能摆成三角形的情况有几种?为什么?

(3)能摆成三角形的三根小棒又有什么规律?

(4)师生归纳总结:三角形任意两边的和大于第三边。

三、应用深化

1.通过实验,我们知道了三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?

2.请学生独立完成86页练习十四的第4题:在能拼成三角形的各组小棒下面画。(单位:厘米)

问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的关系来检验。)

你能用下图中的三条线段组成三角形吗?有什么办法?

3.有两根长度分别为2cm和5cm的木棒。

(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?

(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?

(3)要能摆成三角形,第三边能用的木棒的长度范围是。

四、反思回顾

在这节课里,你有什么收获?学会了什么知识?是怎样学习的?

教学目标:

1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。

2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。

3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。

任意角课件【篇7】

任意角课件

任意角是几何中的一个重要概念,也是数学中的基本知识之一。为了帮助学生更好地理解和掌握任意角的概念和性质,学校编写了一份名为“任意角课件”的教学材料。这份课件旨在通过详细、具体且生动的讲解,帮助学生从多个角度全面了解和掌握任意角的相关知识。

首先,这份课件以图示的方式引导学生一步步认识什么是任意角。课件首先通过绘制各种角度的示意图,比如锐角、直角、钝角等,向学生展示了角度的多样性。接着,课件解释了任意角的定义:任意角是位于坐标平面上的一个角,其顶点位于坐标原点,起始边水平向右,终止边按逆时针方向旋转到目标位置所成的角。通过这种图形化的说明,学生可以更加直观地理解什么是任意角,以及它与其他类型角的区别。

然后,课件详细讲解了任意角的测量方式以及测量单位。课件介绍了度和弧度两种常用的测量单位,然后比较了两者之间的差异和转换关系。为了帮助学生更好地掌握这个知识点,课件提供了大量的实例和练习题。通过实例的分析和解答,学生可以熟悉度和弧度的换算法则,并且能够在不同的问题中正确选择和使用适当的测量单位。

接着,课件介绍了任意角的四象限概念。通过将坐标平面划分为四个象限,课件向学生解释了在不同象限内如何测量和表示任意角。课件还给出了各个象限中角度的范围,并通过一些具体的例子来加深学生对四象限概念的理解。通过这一部分的学习,学生能够清晰地描述和表示给定角度所属的象限,从而更好地处理与任意角相关的问题。

最后,课件还包含了一些任意角的性质和常见应用。课件以简洁而生动的语言,向学生介绍了任意角的几个重要性质,比如任意角与半径的关系、任意角的三角函数、两个任意角之和等。这些性质的介绍涵盖了任意角的基础知识和常见应用,帮助学生更好地理解任意角的概念和性质。此外,课件还提供了一些实际问题和练习题,让学生在解答问题的过程中巩固和运用所学的知识。

总之,这份名为“任意角课件”的教学材料通过详细、具体且生动的讲解,帮助学生全面理解和掌握任意角的相关知识。课件不仅图文并茂地介绍了任意角的定义、测量、象限和性质,还提供了大量的练习题供学生巩固和运用知识。通过这份课件的学习,学生可以在理论和实践中灵活应用任意角的概念,为进一步学习和应用数学打下坚实的基础。

任意角课件【篇8】

1.1.1任意角

一、教材分析

“任意角的三角函数”是本章教学内容的基本概念,它又是学好本章教学内容的关键。它是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础上,进行的推广。它又是下面学习***面向量、解析几何等内容的必要准备。并且,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念。

二、教学目标

1.理解任意角的概念;

2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。

三、教学重点难点

1.判断已知角所在象限;

2.终边相同的角的书写。

四、学情分析

五、教学方法

1.本节教学方法采用教师引导下的讨论法,通过多媒体课件在教师的带领下,学生发现就概念、就方法的不足之处,进而探索新的方法,形成新的概念,突出数形结合思想与方法在概念形成与形式化、数量化过程中的作用,是一节体现数学的逻辑性、思想性比较强的课.2.学案导学:见后面的学案。

3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习

六、课前准备

七、课时安排:1课时

八、教学过程

(一)复习引入:

1.初中所学角的概念。

2.实际生活中出现一系列关于角的问题。

(二)新课讲解:

1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成 一个角,点 是角的顶点,射线分别是角的终边、始边。

说明:在不引起混淆的前提下,“角”或“”可以简记为. 2.角的分类:

正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;

零角:如果一条射线没有做任何旋转,我们称它为零角。说明:零角的始边和终边重合。3.象限角:

在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例如:都是第一象限角;是第四象限角。

(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:等等。说明:角的始边“与轴的非负半轴重合”不能说成是“与轴的正半轴重合”。因为

轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。

4.终边相同的角的集合:由特殊角看出:所有与角终边相同的角,连同角 自身在内,都可以写成的形式;反之,所有形如的角都与角的终边相同。从而得出一般规律:

所有与角终边相同的角,连同角在内,可构成一个集合,即:任一与角终边相同的角,都可以表示成角与整数个周角的和。说明:终边相同的角不一定相等,相等的角终边一定相同。5.例题分析:

例1 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?

(1)(2)(3)解:(1),所以,与角终边相同的角是,它是第三象限角;

(2),所以,与角终边相同的角是角,它是第四象限角;(3),所以,角终边相同的角是角,它是第二象限角。例2 若,试判断角所在象限。解:∵

∴与终边相同,所以,在第三象限。

写出下列各边相同的角的集合,并把中适合不等式的元素 写出来:(1);(2);(3). 解:(1),中适合的元素是(2),S中适合的元素是(3)

S中适合的元素是

(三)反思总结,当堂检测。

教师组织学生反思总结本节课的主要内容,并进行当堂检测。设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)

(四)发导学案、布置预习。

九、板书设计

十、教学反思

以学生的学习为视角,可以对这节课的教学进行如下反思:

(1)学生对课堂提问,回答是否积极?学生能否独立或通过合作探索出问题的结果?

(2)学生处理课堂练习题情况如何?可能的原因是什么?(3)教学任务是否完成?

下面我们着重分析一下提问的效果。

在回答教学设计中的各项提问时,大多数学生存在一定困难,特别是“问题1:任意画一个锐角α,借助三角板,找出sinα的近似值.”和“问题5:现在,角的范围扩大了,由锐角扩展到了0°~360°内的角,又扩展到了任意角,并且在直角坐标系中,使得角的顶点与原点重合,始边与x轴的正半轴重合.在这样的环境中,你认为,对于任意角α,sinα怎样定义好呢?”

对于问题1,除了由于时间久而遗忘有关知识外,学生不熟悉独立地由一个锐角α,构造直角三角形并求锐角三角函数的过程是主要原因,他们更习惯于在给定的直角三角形中解决问题。

对于问题5,教师强调“在坐标系下怎么样?”后,有学生开始尝试回答。这说明这个问题要求的思维概括水平较高,学生仅利用锐角三角函数的有关知识,难以形成当前研究任意角三角函数的思想方法。因此,教师必须要提供必要的脚手架。

在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!

推荐阅读

上一篇:打老师的检讨书汇总 下一篇:竞聘上岗实施方案
back_img
推荐标签