back_img
好工具 >范文 >实用文

高中立体几何知识点总结(四篇)

2023-12-16 11:37:22 高中立体几何知识点 立体几何知识点

【#实用文# #高中立体几何知识点总结(四篇)#】为您提供有关“高中立体几何知识点总结”的一些重要内容好工具范文网有备而来,如果你觉得这个小技巧很好用请尽情分享给你的朋友和家人。各种文档编写让生活和工作更具色彩,阅读范文模板是写作学习的关键步骤,写作过程中能够借鉴范文,形成自己的写作特色。

高中立体几何知识点总结 篇1

1.棱柱、棱锥、棱(圆)台的本质特征

⑴棱柱:①有两个互相平行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都平行且相等)。

⑵棱锥:①有一个面(即底面)是多边形,②其余各面(即侧面)是有一个公共顶点的三角形。

⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。

⑷圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点。

2.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式

3.线线平行常用方法总结

(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两条直线互相平行。

(3)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。

(4)线面垂直的性质:如果两条直线同时垂直于同一平面,那么两直线平行。

(5)面面平行的性质:若两个平行平面同时与第三个平面相交,那么两条交线平行。

4.线面平行的判定方法。

(1)定义:直线和平面没有公共点。

(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。

(4)线面垂直的性质:平面外于已知平面的垂线垂直的直线平行于已知平面。

5.判定两平面平行的方法。

(1)依定义采用反证法;

(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

(4)垂直于同一条直线的两个平面平行。

(5)平行于同一个平面的两个平面平行。

6.证明线线垂直的方法

(1)利用定义。

(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。

7.证明线面垂直的方法

(1)线面垂直的定义。

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,那么,这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于平面。

(4)面面垂直的性质:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,那么这条直线必定垂直于另一个平面。

8.判定两个平面垂直的方法

(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。

9.其他定理

夹在两平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

10.空间直线和平面的位置关系

直线与平面相交、直线在平面内、直线与平面平行

直线在平面外——直线和平面相交或平行,记作aα包括a∩α=A和a∥α

11.空间平面与平面的位置关系

垂直于同一个平面的所有直线(即平面的垂线)互相平行;

垂直于同一条直线的所有平面(即直线的垂面)互相平行。

高中立体几何知识点总结 篇2

什么叫立体几何,立体几何是几何学的一个分支,研究立体图形的性质,如形状、大小、位置等。高中数学立体几何知识点总结有哪些你知道吗?一起来看看高中数学立体几何知识点总结,欢迎查阅!

数学立体几何知识点

1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2.空间两条直线的位置关系:平行、相交、异面的概念;

会求异面直线所成的'角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

3.直线与平面

①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?

④直线与平面所成的角:关键是找它在平面内的射影,范围是

⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.

4.平面与平面

(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

(2)掌握平面与平面平行的证明方法和性质。

(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

(4)两平面间的距离问题→点到面的距离问题→

(5)二面角。二面角的平面交的作法及求法:

①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。

高中数学立体几何知识点

数学知识点1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

数学知识点2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

数学知识点3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

快速提高数学成绩的方法

1、运算是学好数学的基本功.初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有初中数学理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程.初中运算能力不过关,会直接影响以后数学的学习。

2、做完一节的全部练习后,对照答案进行批改.千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;

先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的初中数学;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。

3、最重要就是兴趣问题,学习兴趣是一件非常重要的事情,如何培养我们的学习兴趣呢?首先,我们自己要做的就是调整好我们的情绪,很多同学一提起数学这两个字,负面情绪马上出现,这样,不用其他人,你自己已经把自己给放弃了!因此,想学好初中数学,最重要的是调整好自己的情绪,只有有了积极的情绪,才会有高效率的学习。

高中立体几何知识点总结 篇3

平面

通常用一个平行四边形来表示。

平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。

在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

a) A∈l—点A在直线l上;Aα—点A不在平面α内;

b) lα—直线l在平面α内;

c) aα—直线a不在平面α内;

d) l∩m=A—直线l与直线m相交于A点;

e) α∩l=A—平面α与直线l交于A点;

f) α∩β=l—平面α与平面β相交于直线l。

平面的基本性质

公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;

公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线;

公理3经过不在同一直线上的三个点,有且只有一个平面。

根据上面的公理,可得以下推论,

推论1经过一条直线和这条直线外一点,有且只有一个平面;

推论2经过两条相交直线,有且只有一个平面。

推论3经过两条平行直线,有且只有一个平面。

公理4平行于同一条直线的两条直线互相平行。

拓展阅读:高中数学立体几何解题技巧

1.平行、垂直位置关系的论证的策略:

(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧:

主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:

(2)直线和平面所成的角

①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角

①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:

(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3.空间距离的计算方法与技巧:

(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

高中立体几何知识点总结 篇4

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2:3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。

难点:函数,圆锥曲线。

高考相关考点:

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件。

2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用。

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和。

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用。

5.平面向量:初等运算、坐标运算、数量积及其应用。

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用。

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系。

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用。

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量。

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用。

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布。

12.导数:导数的概念、求导、导数的应用。

13.复数:复数的概念与运算。

推荐阅读

上一篇:学校实习报告优选 下一篇:关于礼仪发言稿14篇
back_img
推荐标签