一、教学内容分析
本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。 在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。
二、学生学习情况分析
本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。
三、设计思想
教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。
教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。
教学方法:先学后教,小组合作,师生互动。
四、教学目标
知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。
过程与方法:自主探究两角差的余弦公式的表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。
情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。
五、教学重点与难点
重点:两角差的余弦公式的推导及证明。
难点:引入向量法证明两角差的余弦公式及两角差范围的说明。
六、教学程序设计
1.情境创设,课上展示。
课前探究:
课上展示:请同学们展示一下课前所得到的结果吧。
设计意:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。
主要目的:让学生自主发现两角差的余弦公式的表达形式。
通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。
2.合作探究,小组展示。
探究一:两角差的余弦公式的推导
问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?
问题5:观察我们得到结论的形式,你能联想到什么呢?
探究二:两角和的余弦公式的推导
问题6:你能根据差角的余弦公式推导出和角的余弦公式吗?
问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?
通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团...
查看更多与“正弦定理教案”相关的文章