【教学目标】
知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。
过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。
情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
【教学重点、难点】
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
【教学过程】
一、 复习引入:
(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?
(2) 合作学习:
①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?
这个问题中有几个未知数,能列一元一次方程求解吗?
如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?
二、 新课教学
这就是我们今天要学习的4、1二元一次方程(板书课题)
(1) 观察上述两个方程,归纳特点
(2) 讨论选择正确概念
① 含有两个未知数的方程叫二元一次方程。
② 含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。
(3) 做一做p86——1,2
(4) 例:已知方程3x+2y=10
① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)
② 求当x=-2,0,3时,对应的y的值
(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?
回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。
同理试写出该方程的两个解(注意写法格式)
思考:方程3x+2y=10的解有多少个?
师归纳:二元一次方程解具不定性和相关性
(5) 练习:p88——课内练习1,2
(6) 补充练习:p89---作业题4(说明:方程的解须是正整数)
已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?
(说明:1.本例是根据教科书p89---b组第5题改编。原题要求a的值,但学
生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原
题要求高了,其实有利于各类学生参与并寻求结论。
三、 课堂小结:
二元一次方程的意义及二元一次方程的解的概念(注意书写格式)
二元一次方程解的不定性和相关性
会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式
四、 作业 :
课堂作业本
(二)难点
灵活运用加减消元法的技...
查看更多与“二元一次方程课件”相关的文章
老师提前规划好每节课教学课件是少不了的,每个老师对于写教案课件都不陌生。 学生反应可以帮助教师及时评估自己的教学效果,怎么样教案课件才算不错呢?经过多方考虑小编为您呈现了这篇精选的“一元一次方程课件”,祝愿这些参考内容可以为你的工作或学习带来实质性的帮助!
1.要求学生学会用移项解方程的方法.
2.使学生掌握移项变号的基本原则.
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.
投影仪或电脑、自制胶片、复合胶片.
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.
(1) ; (2) ;
得 ,得 ,
即 . 合并同类项得 .
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.
师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2.改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,分四组,这样节省时间.
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.
(3) ; (4) .
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生...
查看更多与“一元一次方程课件(收藏15篇)”相关的文章
以下是好工具范文网编辑为您推荐的“一元一次方程课件”。每位老师都需要认真编写教案课件,因为它是不可或缺的课堂工具。准备好教案课件的前期工作非常重要,只有这样才能确保课堂教学达到预期效果。希望我的建议对您有所帮助,让您能更好地解决问题!
1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
2、使学生加强了解列一元一次方程解应用题的方法步骤。
重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。
突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。
1、列方程解应用题的一般步骤是什么?
2、路程、速度、时间的关系是什么?
3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
例(课本p216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:
设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450
(2)再分析快车先开了30分两车相向而行的'情形。
说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。
1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
2、相向而行的相遇问题中,要注意时间的关系。
3.4实际问题与一元一次方程探究(2)
--销售中的盈亏
2、某服装店为了清仓,某件成本为90元的衣服亏损了10%,则这件衣服卖了_ _元
3、一件衬衣进价为100元,利润率为20% 这件衬衣售价为 ______ 元;
4.一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元;
一、教学目标
能利用一元一次方程解决商品销售中的实际问题。
4.随州某琴行同时卖出两台钢琴,每台售价为960元。
其中一台盈利20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?
二.知识链接
在数学上,商品销售问题也成了一类非常重要的实际问题,在商品销售问题中,首先理解几个概念:
(1)成本价:是商家进货时的价格(有时也称进价);(2)标价:商家在出售时,标注的价格
(称原价、定价);(3)售价:消费者购买时真正花的钱数(有时叫成交价、卖出价);(4)利润:商品出售后,商家所赚的部分,(利润=售价-进价)(5)利润率:在销售过程中,利润占进价的百分比;(6)打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售,卖货时,按照标价乘以十分之几或百分之几十,如:...
查看更多与“最新一元一次方程课件(合集九篇)”相关的文章