back_img
好工具 >范文 >实用文

分数乘法北师教案

2024-08-27 17:15:44 分数乘法北师教案

分数乘法北师教案 篇1

教学内容:

人教版五年级下册数学第65-66例1、例2

教学目标:

理解掌握分数与除法的关系。

教学准备:

4张大小完全相同的圆形纸片。

教学过程:

一、游戏导课

《分蛋糕》老师口述题学生拍手回答。

1)8个蛋糕平均分给2个人,每人分几个?

2)4个蛋糕平均分给2个人,每人分几个?

3)2个蛋糕平均分给2个人,每人分几个?

4)1个蛋糕平均分给2个人,每人分几个?

在老师口述第4)题后学生无法拍手回答,则抢答半个或个,师板书:个。老师问:怎样列式?学生答后老师板书:1÷2,此时老师指着板书1÷2=个。由此导入新课并板书课题。

二、学习新课

1、学习例1.把1个蛋糕平均分给3个人,每人分得几个?

1)学生口答老师板书个。

2)怎样列式?学生口答老师板书:1÷3=(个)

3)等号左右两边为什么相等呢?(老师引导分别说出1÷3和个表示的意义,并根据图示使学生明白:它们表示的是同一涂色部分,所以相等)

4)练习:把1块蛋糕平均分给5人,每人得几个?老师逐次口述,将划线部分变为平均分给10人、15人……全班同学呢?

2、学习例2:把3块蛋糕平均分给4人,每人分得多少块?

(1)列式:生答师书:3÷4

(2)动手分一分:学生拿出提前准备好的3张相同的圆形纸片,小组合作分一分,每人分得3块蛋糕的,就是1块蛋糕的,就是块。

(3)汇报:怎么分?每人分得多少块?

(4)同桌互说分法,重点理解:3块的=1块的

(5)练习:

把2块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

把3块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

把5块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

把10块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

3、归纳分数与除法的关系

(1)观察板书;1÷3=(块)3÷4=(块)我们发现用分数可以表示两个整数相除的商,讨论:分数与除法有什么关系?(生答师强调用“相当于”描述,并板书)

(2)练习:

5÷8==()÷()

11÷9==()÷()

(3)判断对错,并说说为什么。

分数就是除法,除法就是分数。   (  )

(4)用字母表示关系。(学生试写并板演)

a÷b=(b≠0)

三、全课总结:

你学会了什么?

四、作业:

P67(1-3)

五、板书设计:

分数与除法

被除数

被除数÷除数=_________________(除数不为0)

除数

a÷b=(b≠0)

分数乘法北师教案 篇2

教学目标

1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的`基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点使学生理解分数的基本性质。

教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程

一、故事情景引入

同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

二、新授

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2.师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3.师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4.研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

5.深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

三、应用

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

分数乘法北师教案 篇3

备教材内容

1、本课时学习的是教材2页的内容及相关习题。

2、例1以一家人吃蛋糕的情境引出分数乘整数的学习内容,使学生理解分数乘整数的意义及算理,掌握其计算方法。在学生掌握分数乘整数的计算方法的基础上,使学生进一步了解乘得的积一般应化成最简分数,掌握把积化成最简分数的两种方法。这节课是本单元的起始课,是学生学习分数乘除法的基础。

备已学知识

整数乘法的意义

求几个相同加数的和,可以用乘法计算。

分数的'意义

把整体“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数加法的计算方法

同分母分数相加,分母不变,分子相加。

备教学目标

知识与技能

1、理解分数乘整数的意义,掌握分数乘整数的计算方法。

2、能够应用分数乘整数的计算方法比较熟练地进行计算。

过程与方法

通过观察、比较,归纳分数乘整数的计算方法,培养学生的抽象概括能力。

情感、态度与价值观

1、引导学生探究知识间的内在联系,激发学生的学习兴趣。

2、在理解算理的同时体会数学知识的魅力,领略数学的美。

备重点难点

重点:理解并掌握分数乘整数的意义和计算方法。

难点:明确分数乘整数的算理。

备知识讲解

知识点:分数乘整数的意义及计算方法

知识回顾:同分母分数相加,分母不变,分子相加。

问题导入:小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?(教材2页例1)

过程讲解

1、理解题意

(1)理解关键语句的含义。

题中的“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思是说每人吃了整个蛋糕的。

(2)确定标准量(单位“1”)和比较量。

每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位“1”),把每人吃的份数看作比较量。

(3)借助示意图理解题意。

①画标准量:画一个圆表示标准量(单位“1”),如图一。

②画比较量:把表示标准量(单位“1”)的圆平均分成9份,其中的2份就表示每人吃的份数,如图二。

③明确所求问题:求3人一共吃多少个,就是求3个是多少,如图三。

图一图二图三

2、根据题意列出加法算式

++

3、探究分数乘整数的意义

重点提示

3个相加,用乘法也可以表示成3x。

(1)转化:将加法算式转化为乘法算式。

++3个加数相同转化为乘法算式x3

方法提示

求一个分数的几倍是多少或求几个相同分数的和是多少,就用这个分数乘“几”。

(2)明确意义:从算式中可以看出x3表示求3个相加的和是多少,也可以表示求的3倍是多少。也就是在这种情况下与整数乘法的意义完全相同。

4、探究x3的计算方法

(1)借助示意图计算出结果。

思想方法解读

借助示意图理解题意,其中蕴涵着数形结合思想。把数量关系和空间形式结合起来去分析问题和解决问题就是数形结合思想。

(2)计算加法算式的结果。

++===

(3)计算乘法算式的结果。

x3=++====

(4)观察对比。

(5)分数乘整数的简便计算。

分数乘整数时,如果分母和整数能约分,可以先约分,再计算,这样比较简便。例如:x3=。

5、解决问题

灵活应用

分数乘整数的计算方法对于整数乘分数同样适用。例如:5x==。

x3=

答:3人一共吃个。

归纳总结

1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算,结果不变。

拓展提高

1、带分数乘整数的计算方法:先把带分数化成假分数,再按照分数乘整数的计算方法进行计算。例如:3x2=x2=。

2、分数乘整数的简便算法也适用于分数连乘。例如:x10x3,在计算的过程中,分数的分母9和整数3能约分,可以先约分,再计算。

分数乘法北师教案 篇4

教学目标:

结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。

理解分数乘整数的计算方法,会计算分数乘整数的乘法。

体验用乘法解决连加问题的价值,激发学习新知识的愿望。

教学重点:分数乘以整数的计算方法。

教学难点:

正确运用先约分,再相乘的方法进行计算。

教学过程:

一、复习铺垫

1、让我们先来做几道口算题,你能直接口算出结果吗?

出示:

3/8 +1/8= 1/3+1/5= 7+9=

1/4+1/4+1/4= 2/9 +2/9= 3+3+3+3+3+3=

2、学生口答。

3、最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3x5或5x3来计算。

4、师小结:是啊,求几个相同加数的和的'简便运算可以用乘法。

质量问题

教师口述问题,让学生用自己喜欢的方法解决。

交流学生计算的方法和结果。

2/5+ 2/5+ 2/5 2/5 x3

=2+2+ 2/5 = 2*3/5

=6/5( 千克 ) = 6/5( 千克 )

3、比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书: 2/5+ 2/5+ 2/5= 2/5x3

为什么可以用乘法计算?

加法表示3个2/5相加,因为加数相同,写成乘法更简便.

2/5x3表示什么?怎样计算?

表示3个2/5的和是多少?

2/5+2/5 + 2/5=2+2+2/5 =2*3/5 = 6/5 用分子2乘3的积做分子,分母不变.

6、 提示:为计算方便,能约分的要先约分,然后再乘.

三、归纳、概括:

分数乘整数,用分子和分母相乘的积做分子,分母不变

试一试

让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

练一练

教学后记:

这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法 上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成 ,进而从 ,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。

分数乘法北师教案 篇5

复习激趣《分数与除法》教学设计目标导学《分数与除法》教学设计自主合作《分数与除法》教学设计汇报交流《分数与除法》教学设计变式训练创境激疑

一、导入揭题。

1、复习:76是()数,它表示()。107的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

合作探究

二、明确学习目标。(在此处明确)

1、通过观察、探究,理解分数与除法的关系。

2、通过练习,会用分数表示两个数相除的商。

三、指导学生自主学习标杆素材、展示、反思、训练、点拨。通过观察、操作,自主探究分数与除法的关系。

例1、把一个蛋糕平均分给3人,每人分得多少个?

学习要求:

1、平均分怎样列式?

2、同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

3、观察这两种解法有什么联系?

例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

1、平均分同样可以列式为:3÷4。

2、小组合作探究:3÷4的商能不能用分数表示呢?【练后反思】通过进一步探究,你发现分数与除法有什么关系了吗?

【被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?】

拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

总结

通过这节课的学习,你有什么收获?

作业布置

在括号里填上适当的数。5÷8=12÷17=()÷()=m÷n(n≠0)=

板书设计

分数与除法

例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)

分数乘法北师教案 篇6

教学目标:

结合趣味故事经历认识分数的基本性质的过程。

初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

经历观察、操作和讨论等学习活动,体验数学学习的乐趣

教学重点:理解掌握分数的基本性质。

教学难点:归纳分数的性质。

学生准备:长方形纸片。

一、创设故事情境,激发学生学习兴趣并揭示课题。

编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?

让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

二、小组合作,探究新知:

1、动手操作、形象感知

出示课件,让学生观察讨论图中分数的涂色部分是多少?

A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?

B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?

C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。

2、观察比较、探究规律

(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。

(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题

(4)通过从左到右的观察、比较、分析,你发现了什么?

使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。

【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】

3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?

观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:

先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?

4、归纳规律

提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?

学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”

6、小结

同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】

四、巩固强化,拓展应用

多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。

五、游戏找朋友。

六、布置作业:

在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。

分数乘法北师教案 篇7

一、说教材:

1、掌握一个数除以分数的方法,并能正确计算。

2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

3、利用数形结合的方式,体会“转化”的数学思维方法。

本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

二、说教法和学法:

本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

三、教、学具准备。

老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

四、说教学过程:

1、复习铺垫,提供猜测基础。

数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。

接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

2、验证猜想,理解计算过程。

为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?

学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

3、大量练习,使用计算方法。

数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?

这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?

接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。

4、观察比较,选择计算方法。

让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

5、归纳总结,完善计算法则。

通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

五、说板书:

板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

分数除法二教学设计2

教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

教学重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

教学过程:

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数?

(2)你能举出几对倒数的例子吗?

(3)如何求一个数的倒数?

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

问题2:这些白糖一共重2千克,每袋白糖有多重?

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

二、创设情境,理解意义

展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

2、汇报

三、大胆猜想

学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

四、再次探究

1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

除以一个整数(零除外)等于乘这个整数的倒数。

推荐阅读

上一篇:最新环卫演讲稿(合集八篇) 下一篇:年度人事科工作总结九篇
back_img
推荐标签