这篇文章将帮助您更深入地了解“《怎样解题》读后感”的内涵和含义。书籍是全世界的营养品,在认真品味在读了作者写的作品以后,让人感觉收获不少。 通过撰写读后感,展现您对书籍的品味和理解。请你认真阅读本文希望你会喜欢!
在“拟定计划”中,大部分学生对于“你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?”都回答不上来,因为这部分学生的基础太差了,要想实现波利亚的程序,就必须首先回到基础,教师帮助学生把基本问题弄清楚。例如,在讲列方程解应用题时,应该不厌烦地把小学阶段就应该掌握的倍数关系、行程关系等再交待给学生,然后再按彼利亚的解题程序启发学生想下去。
回到基础只是补上知识的缺欠,其真正目的在于强化类比,在《数学的发现》第一卷的序言中,波利亚说:“解题是一种实践性技能,就像游泳、滑雪或弹钢琴一样,只能通过模仿和实践来学到它。”模仿即是类比。
而“拟定计划”中的许多揭示语言,实际上都是让学生去学会类比,故我们在实验中,更强调对学生的类比能力的.培养。
乔治·波利亚是当代杰出数学家和数学教育家,从1944年起,他连续出版了:《怎样解题》、《数学与似真推理》、《数学的发现》,都成为世界名著。
特别是《怎样解题》一书,书中给出了“怎样解题”表,按这张表的程序去思考,可以使学生“不仅试图去弄清楚这个或那个问题的解答,而且要了解这个解答的出发点与方法”。(见第一版序言),这对于解题有困难的学生来说,是有很大帮助的。
用“怎样解题”表提供的思考程序,我们对初二上学期15名数学“学困生”进行实验,经过半年时间,绝大多数同学都有显著提高(我们这里谈“学困生”的,是指数学成绩落后,智力水平正常的学生)。
“怎样解题”表共分四个大部分:弄清问题;拟定计划;实现计划;回顾。对于第一部分,即未知数是什么?已知数据是什么?条件是什么?等学生是容易分清的。而对于第四部分,除“你能否检验这个论证?”外,其余的问题大部分学生不容易做到,故我们的重点在二、三部分。结合“学困生”的特点,我们主要在下述的三个方面有所侧重。
这本历史悠久的畅销书是一位著名数学家写的。它虽然论述了数学中发现和发明的方法和规律,但对其他领域如何正确思考有着明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法可以怎样有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。这本书主要有5个目的,1、帮助学。
2、问题建议、思维活动。3、普通性。4、常识。
5、教师和学生、模仿和实践。
让我给你介绍一下如何帮助学生。教师最重要的任务之一是帮助学生。这项任务不容易。它需要时间、实践、奉献和正确的原则。学生应当获得尽可能多的独立工作的经验,但是,如果把问题留给他一个人而不给他任何帮助,或者帮助不足...
查看更多