有理数的除法教案
学习目标:
理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算.
学习重点:正确运用有理数除法法则进行有理数除法运算.
学习难点:寻找有理数除法转化为有理数乘法的方法和条件.
教学方法:引导、探究、归纳与练习相结合
教学过程
活动一 探讨有理数除法法则:
独立完成——合作交流——展示成果
阅读课本p35例5以上的内容,谈谈有理数除法法则是如何得出的?换其他数的除法进行类似讨论,是否任有除
目标导行:
1.理解除法的意义、除法是乘法的逆运算.(重点)
2.理解和掌握有理数除法的两个法则,会正确地进行有理数的除法运算.(重点、难点)
思维诊断:
(打“√”或“×”)
(1)0除以任何一个数,都得0.( )
(2)1除以一个非零数就等于乘这个数的倒数.( )
(3)两数相除,商一定小于被除数.( )
(4)两数相除商为正数,则这两个数均为正数.( )
(5)一个不等于0的有理数除以它的相反数等于-1.( )
【总结提升】有理数相除的方法
1.0除以任何一个不等于0的数,都得0;但0不能作除数.
2.在进行除法运算时,若能整除,则用“两数相除,同号得正,异号得负,并把绝对值相除”;若不能整除,则用“除以一个不等于0的数,等于乘这个数的倒数”.
3.除法算式中的小数常化成分数,带分数化成假分数,便于转化为乘法时约分.
【总结提升】分数化简的方法
1.把分数转化为除法,利用有理数的除法法则进行化简.
2.利用分数的基本性质,分子和分母都乘以同一个数或都除以同一个不为0的数结果不变进行化简.
6.某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.
(1)用正负数表示每日实际生产量与计划量的增减情况.
(2)该自行车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?
【归纳整合】符号移动法
化简分数仍遵循“同号得正,异号得负”的符号法则,因此可得符号移动法则:分子、分母、分数前面的符号,三者有一个或三个为负,结果为负,有两个为负,结果为正.
1.4.2有理数的除法 同步导练(含答案)
1.填空:
(1)乘积是1的两个数互为______;
(2)有理数的除法法则,除以一个数等于乘以这个数的______;
(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.
1.4.2有理数的除法法则 同步习题
1.有理数的除法法则:除以一个不等于0的数,等于乘这个数的____.
2.两数相除,同号____,异号____,并把绝对值相除;0除以任何不为0的数得____.
3.有理数的乘除混合运算通常先把除法转化为____,然后确定积的____,最后求出结果
在数学中,由若干个单项式相加组成的代数式叫做多项...
查看更多与“人教版七年级数学上册课件精品”相关的文章