back_img
好工具> 范文网>

因式分解教案

因式分解教案

发布时间:2024-04-23
1 因式分解教案汇总八篇
因式分解教案

因式分解教案 篇1

教学内容:

分解质因数

教学目标:

1、使学生了解每一个合数,都可以写成几个质数相乘的形式

2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。

教学过程:

一、复习

学生回答质数的概念,并举例说明

二、引入新课

1、教学例2

把合数10、24和63分别用质因数相乘的形式表示出来。

10=2×5

24=2×2×2×3

63=3×3×7

(1)一个合数可以用几个质数相乘的形式表示

(2)一个合数可以写成几个质数相乘的形式

(3)把合数写成质数相乘的形式叫做分解质因数。

2、区别几个概念

(1)质数,因数,质因数,分解质因数

(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,

(3)质因数要求因数本身必须是质数。

3、教学例3

把15、42、60分解质因数

(1)用短除法分解质因数

(2)什么是短除法

(3)练习

(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。

三、巩固练习

1、练一练

四、总结归纳,布置作业

教学反思:

我认为这节课最重要的的是:

1、让学生理解短除法的意思。

2、分解质因数的时候,因数必须是质数。

因式分解教案 篇2

教学目标

1、使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系、

2、使学生理解提公因式法并能熟练地运用提公因式法分解因式、

3、通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.

教学重点及难点

教学重点:

因式分解的概念及提公因式法、

教学难点:

正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系、

教学过程

一、复习提问

乘法对加法的分配律、

二、新课

1、新课引入:用类比的方法引入课题、

在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数)、例如,把15分解成3×5,把42分解成2×3×7、

在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法、

2、因式分解的概念:

请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果、(老师按学生所说在黑板写出几个、)

如:m(a+b+c)=ma+mb+mc

2xy(x-2xy+1)=2x2y-4x2y2+2xy

(a+b)(a-b)=a2-b2

(a+b)(m+n)=am+an+bm+bn

(x-5)(2-x)=-x2+7x-10 等等、

再请学生观察它们有什么共同的特点?

特点:左边,整式×整式;右边,是多项式、

可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解、

定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式、

如:因式分解:ma+mb+mc=m(a+b+c)、

整式乘法...

查看更多
2 因式分解教案汇总13篇
因式分解教案

因式分解教案 篇1

一、案例背景

现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习用心性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。

因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。

二、案例分析

教学过程设计

(一)『情境引入』

情境一:如何计算375×2。8+375×4。9+375×2。3你是怎样想的

问题:为什么375×2。8+375×4。9+375×2。3能够写成375×(2。4+4。9+2。3)依据是什么

【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。

(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课资料的学习创设了良好的情绪和氛围。

情境二:分析比较

把单项式乘多项式的乘法法则

a(b+c+d)=ab+ac+ad①

反过来,就得到

ab+ac+ad=a(b+c+d)②

思考(1)你是怎样认识①式和②式之间的关系的

(2)②式左边的多项式的每一项有相同的因式吗你能说出这个因式吗

【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。

(2)、本题注重培养学生观察、分析、归纳的潜力,并向学生渗透比较、类比的数学思想方法。

(二)『探究因式分解』

1、认识公因式

(1)、【概念1】:多项式ab+ac+ad的各项ab、ac、ad都内含相同的因式a,称为多项式各项的公因式。

(2)、议一议

下列多项式的各项是否有公因式如果有,试找出公因式。

①多项式a2b+ab2的公因式是ab,……公因式是字母;

②多项式3x2—3y的公因式是3,……公因式是数字系数;

③多项式3x2—6x3的公因式是3x2,……公因式是数学系数与字母的乘积。

分析并猜想

确定一个多项式的公因式时,要从和两方面,分别进行思考。

①如何确定公因式的数字系数

②如何确定公因式的字母字母的指数怎样定

练一练:写出下列多项式各项的公因式

(1)8x—16(2)2a2b—ab2

(3)4x2—2x(4)6m2n—4m3n3—2mn

【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能透过相互间的交流来纠正解题中的常见错误。

(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,个性是多次方及系数的公因式,要让学生注意。

(3)、找公因式的一般步骤可归纳为:一看系数二看字母三看指数。

2、认...

查看更多
推荐栏目
back_img
实用文
工作总结
工作计划
述职报告
心得体会
句子
作文
自我鉴定
祝福语