范文网

单调课件

更新时间:2025-05-27
1

函数的单调性课件(精华7篇)

单调课件

函数的单调性课件 篇1

下面是好查范文网小编整理的高一数学《函数的单调性》说课稿模板,希望对大家有所帮助。

一、教材分析

1 、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下b)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:

知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1) 突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:

重点:“二面角”和“二面角的平面角”的概念

难点:“二面角的平面角”概念的形成过程

二、教法分析

1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

三、学法指导

1 、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2 、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、 会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题 。

四、教学过程

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

(一)、二面角

1、揭示概念产生背景。

问题...

查看详情>>
2

最新单调性课件模板8篇

单调课件

老师在上课前需要有教案课件,只要课前把教案课件写好就可以。教案的编写需要注意情感教育和智育教育的结合。根据您的提要编辑为您整理了以下有用的信息:“单调性课件”,为了方便访问请将本页添加到书签列表!

单调性课件 篇1

1、会用等比数列的通项公式和前n项和公式解决有关等比数列一些简单问题;提高分析、解决实际问题的能力。

2、通过公式的灵活运用,进一步渗透分类讨论的思想、等价转化的思想。

知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。:

如图为黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和 y值之间的变化规律。

(2)左侧 y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

①定义:对于函数f(x)的定义域i内某个区间上的任意两个自变量的值

⑵若当f(),则f(x) 在这个区间上是减函数(如图4)。

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

当x1几何解释:递增 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。(2)函数单调性是针对某一个区间而言的,是一个局部性质。有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。判断2:定义在r上的函数 f (x)满足 f (2)> f(1),则函数 f (x)在r上是增函数。(×)函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。例1 、如图,是定义在闭区间上的函数的图象,根据图象说出的单调区间,以及在每一单调区间上,函数是增函数还减函数。注意:(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。例2 判断函数 f (x) =3x+2 在r上是增函数还是减函数?并证明你的`结论。引导学生进行分...

查看详情>>
404 Not Found

404 Not Found


nginx