搜索更多内容
倍数与因数课件(精选3篇)
教学目标:
①知识技能:经历找两个数的公因数的过程,理解公因数和公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和公因数。
②数学思考:结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、有序的思考习惯。
③问题解决:培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。
④情感态度:积极地参与数学活动,体验自主学习的快乐,体验学习数学的快乐。
教学重点:
经历找两个数的公因数的过程理解公因数和公因数的意义。这是本节课的核心任务。
教学难点:
会用列举法求两个数的公因数和公因数,并用集合圈记录、呈现思考过程。这是因为虽然列举法是最低级的方法,但也是最重要和最直观的方法,用集合圈呈现思考的过程是学生思维的提升,需要他们充分地理解公因数的意义。
教学方法:
1、将教学内容活动化,让学生在做中学。此节内容教材的安排比较枯燥,不太能激发孩子的学习兴趣,因此,将教材呈现的写乘法算式找因数的问题情境丰满,改变成为学校体操队男女小组排队形的活动,引出寻找公因数的话题。
2、采用小组合作学习,让学生在交往互动中学。现代社会需要的人才合作能力是最重要的一项,为了对孩子的以后学习和终身发展负责,本课设计中采用小组合作较多,同时也为突显“探究发现法”和“讨论归纳法”做铺垫。
3、充分利用原有的认知经验,在迁移中学。《课标》指出:数学知识的教学,要注重知识的“生长点”与“延伸点”。本课的“生长点”就在于“找因数”,利用数学迁移的思想,就能引导孩子很好地理解公因数和公因数的概念,并在不断的迁移中拓展延伸。
教学过程:
一、 创设情境,铺垫新知
1、创设情境:同学们学校体操队里女生组有12名队员,男生组有18名队员,他们马上要比赛了。请你分别帮男生组和女生组排一排队形。
2、你能用算式表示你排的队形吗?
生说师课件演示:12=1×12=2×6=3×4
18=1×18=2×9=3×6
(设计目的:在具体的情境中进行交流活动,帮助学生复习因数,感知公因数,为新知的学习做好铺垫。同时将问题的情境丰满,能激发学生的学习兴趣,使知识不再枯燥无味。)
二、自主探索,获取新知。
1、观察发现
师:从这两行等式中你发现了什么?
生:1,12,3,4,2,6是12的因数。1,18,2,9,3和6是18的因数。而其中1,2,3,6既是12的因数又是18的因数。
课件出示集合圈。
2、揭示概念
由于1,2,3,6既是12的因数又是18的因数,在集合圈里我们可以把两个集合圈合并,中间交叉的部分填上它们公有的因数,也就是它们的公因数(课件演示)。
3、深化理解
提出问题:它们的公因数会有多少个?最小的是谁?
学生讨论后得出:一个数因数的个数是有限的,所以两个数的公因数个数也是有限的,这里12和18的公因数是6。
4、揭示课题:今天我们这节课就是学习找公因数。(板书)
5、方法梳理:回顾一下,我们...
查看详情>>最新因数与倍数课件(汇集16篇)
一、教学内容
1.因数和倍数
2.2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
1.精简概念,减轻学生记忆负担。
三方面的调整:
a.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
b.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
c.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
四、具体编排
1.因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用26=12给出因数和倍数的概念。
(2)用34=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不...
查看详情>>2024因数和倍数教案集合12篇
《倍数和因数》,由于之前没上过这册资料,在看完教材后就和同组的教师说,这个资料好像挺简单的。可是上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,并且在课堂中存在了很多在预设中没有想到的问题,下头对自我的课堂做一些反思:
1.在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎样摆的,有几种不一样的摆法?经过让学生动手操作实践,体现了以学生为本,并且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不一样的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应当是很简单的两句话,学生应当会说,可是当请学生来自我选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。
针对学生出现的问题,我觉得可能是自我在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应当在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。
2.第二个环节是探求找一个数的倍数的方法,从上一个环节我最终出示的除法算式中引入:我们明白了18是3的倍数,那3的倍数是不是仅有18呢经过疑问来激发学生找出3的倍数有哪些学生很快能找到,可是并没有找全,于是再问,那又什么办法把3的倍数找全呢学生自然想到去乘1,乘2,乘3……,也就按顺序找到了3的倍数。在分别找到了2和5的倍数后我问学生:观察上头这几个例子,你有什么发现?请了好几个学生都没能找到,最终还是教师告诉了学生倍数最小是?最大呢?
针对最终请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不明白该找什么。能够问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。
3.第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是必须困难的,而这个环节我处理的也不到位,学生对找一个数因数的方法掌握的不够好。
我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否能够先从12下手,因为前面一开始已经找过12的因数了,如果那里能用12做一下铺垫,可能找36的因数时就会好一些。
在学生自主探索完36的因数有哪些后,交流不一样学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎样找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数...
查看详情>>搜索更多内容
推荐栏目
热门标签