作为一名人民教师,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。写教案需要注意哪些格式呢?下面是小编精心整理的幼儿园大班数学《向0敬个礼 》教案,希望能够帮助到大家。
教学目标
1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;
(3)通过通项公式认识等比数列的性质,能解决某些实际问题.
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.
教学建议
教材分析
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.
教学设计示例
课题:等比数列的概念
教学目标
1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是等比数列的定...
查看更多作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案有助于顺利而有效地开展教学活动。那么优秀的教案是什么样的呢?以下是小编整理的《平方根》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的`错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0.2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0...
查看更多与“平方根小学教案”相关的文章
每位教师都离不开教案课件,但教师也要明白教案课件不能随意书写。教案在课堂教学中是不可或缺的一部分。根据您的要求,我们编辑了“平方根教案”。如果您觉得这份资料对您有帮助,请与您的朋友和家人分享一下!
一、 教材分析:
1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根。
2、 教材的地位与作用
本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。
3、 教学重点、难点
教学的重点:算术平方根概念的引入
教学的难点:解决实际问题,动手操拼图
二、 教学目标设计:
知识与技能:
1、说出正数a的算数平方根的定义,记住零的算术平方根;
2、会用 表示一个非负数的算术平方根;
3、知道非负数的算术平方根是非负数;
数学思考:通过学习平方根,建立初步的数感和符号感,发展抽象思维;
解决问题:通过拼大正方形的活动,体验解决问题方法的多样性,发展形象思维;在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。
情感态度:通过学习平方根,认识数学与人类生活的密切联系;通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。
三、教学分析:
1、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。
2. 相应的教法:从一些完全平方数入手,引入概念,设置疑问,动手操作,再根据实践需要,教师从方法上指导师生合作探究。
3. 具体措施:精讲多练,教师担任设计活动、调节气氛、整理归纳的导演作用,学生是表现者、活动者。运用多媒体提高课堂容量,增加形象感与趣味性。通过声像并茂、动静皆宜的表现形式,生动、形象地展示教学内容,扩大学生视野,有效促进课堂教学的大容量、多信息和高效率,有利于学生开发智能、培养能力和提高素质,将教学引入了一个新的境界。
四、教学过程设计:
1、创设情境 引入新课
结合通过神州七号载人飞船发射成功引入新课,从而激发兴趣,增强学生的爱国热情。
2、师生互动,学习新知
以秋天的长白山为话题,师创设问题,已知正方形的面积,求边长。通过分析问题,引导学生归纳算术平方根的`概念。在此基础上师通过想一想试一试练一练加深学生对基础知识的理解,突出本课的重点,从而归纳出:负数没有平方根,算术平方根具有双重非负性。
3、动手操作 学以致用
从生活中提炼数学问题,引导学生在日常生活中,勤于实践,活学活用,善于用所求的知识解决一些身边的实际问题,体会数学的应用价值,通过拼大正方形的活动体验解决问题方法的多样性,发展形象思维,在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。
4、随堂检测 反思教学
通过小测试,及时检测学生...
查看更多与“平方根教案15篇”相关的文章